\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
tìm x và y
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Tìm x , y ϵ Z biết :
\(a,\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
\(b,\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Dựa theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
-> x = \(12.\dfrac{3}{2}=18\)
y =\(12.\dfrac{4}{3}=16\)
z =\(12.\dfrac{5}{4}\) = 15
tìm x, y
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Ta có : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Nên : \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
<=> 6x = 12
=> x = 2 .
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Tìm x,y biết : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)1
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
TH 1 : \(2x+3y-1=0\)
\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)
\(\Rightarrow2x+1=0;3y-2=0\)
\(\Rightarrow2x=-1;3y=2\)
\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)
TH 2 : \(2x+3y-1\ne0\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow1=\frac{3y-2}{7}\)
\(\Rightarrow3y-2=7\)
\(\Rightarrow3y=9\)
\(\Rightarrow y=3\)
Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)
Theo t/c dãy tỉ số bằng nhau :
\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
\(\Rightarrow6x=12\Leftrightarrow x=2\)
Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)
\(1=\frac{3y-2}{7}\)
\(\Rightarrow3y=9\Leftrightarrow y=3\)
ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
x = 2
=> \(\frac{2x+1}{5}=\frac{2.2+1}{5}=\frac{5}{5}=1\)
\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
KL: x = 2; y = 3
tìm x,y biết :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Áp dụng TC DCTSBN ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Thay x = 2 và 2 TLT đầu ta được :
\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)
\(\Leftrightarrow\frac{3y-2}{7}=1\)
\(\Rightarrow3y-2=7\Rightarrow y=3\)
Vậy x = 2 và y = 3
Tìm x,y biết
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\) \(\left(x\ne0\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)\(=\frac{\left(2x+1\right)+\left(3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}\)\(=\frac{0}{12-6x}=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\3y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{2}{3}\end{cases}}\)
tìm x,y,x biết :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
\(\Rightarrow\frac{2x+1}{5}=k\rightarrow2x+1=5k\rightarrow2k=5k-1\)
\(\frac{3y-2}{7}=k\rightarrow3y-2=7k\rightarrow3y=2k+2\)
\(\frac{2x+3y-1}{6x}=k\rightarrow2x+3y-1=6x.k\)
\(\rightarrow5k-1+7k+2-1=k.3\left(5k-1\right)\)
\(\rightarrow12k=15k^2-3k\)
\(\rightarrow15k^2-15k=0\)
\(\rightarrow15k\left(k-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k=0\rightarrow x=\frac{-1}{2};y=\frac{2}{3}\\k=1\rightarrow x=2;y=3\end{cases}}\)
Tìm x,y biết:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\)
\(=\frac{2x+1+3y-2-2x-3y+1}{5+7-6x}=0\)
\(\Rightarrow\frac{2x+1}{5}=0\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow\frac{3y-2}{7}=0\Rightarrow y=\frac{2}{3}\)
Đề bài: Tìm x, y :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Cách 1: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Rồi sau đó tính ra đc y = 3.
Cách 2 : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)-\left(2x+3y-1\right)}{5+7}=\frac{0}{12}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2x+1}{5}=0\\\frac{3y-2}{7}=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=-1\\3y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{3}\end{cases}}}\)
Lúc đầu thì mình làm theo cách 1, rồi mấy đứa khác nó làm theo cách 2. Mình thấy lạ vì bài này từng làm nhiều rồi mà bây giờ mới thấy cách khác. Cô bảo cả 2 cách đều đúng nhưng đáp số lại khác nhau.
Ai tìm ra chỗ sai trong bài này giúp mình với !
cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại
bạn làm theo cách một chúng ta dc:
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng đúng v~
Khi 2x+3y-1=0 thì nó thành cách 2 đấy
Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.
v~ thiệt