cho tam giác ABC vuông tại A.Đường phân giác AD (D thuộc BC ).CMR:2/AD^2=1/BD^2+1/CD^2
Cho tam giác abc vuông tại a,ad là tia phân giác góc a(d thuộc bc).CMR:1/(ad^2)=1/(bd^2)+1/(cd^2). Cần gấp mn ơi trc 10h càng tốt nhé .·´¯`(>▂
Cho tam giác ABC vuông tại A.Đường phân giác BD(D thuộc AC).Kẻ DH vuông góc với BC(H thuộc BC).Gọi K là giao điểm của BA và HD. a,C/M:AD=HD b,BD vuông góc KC c,Góc DKC= góc DCK d,2(AD+AK) > KC
b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)
Ta có: BA+AK=BK(A nằm giữa B và K)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(ΔABD=ΔHBD)
và AK=HC(cmt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của KC
hay BD\(\perp\)KC(đpcm)
a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)
Suy ra: AD=HD(hai cạnh tương ứng)
c) Xét ΔDKC có DK=DC(cmt)
nên ΔDKC cân tại D(Định nghĩa tam giác cân)
Suy ra: \(\widehat{DKC}=\widehat{DCK}\)(hai góc ở đáy)
cho tam giác ABC vuông tại A.Đường phân giác AD ( D thuộc BC ).CMR:2/AD^2=1/BD^2+1/CD^2
cố gắng giúp mình nha,mình đang cần gấp
Note : Khôi đây :V
T đã giải xong, nếu muốn câu tl thì fb nhé !
https://www.facebook.com/DokyuhiSS
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
a) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=6:2:1\)
nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}\)
mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(cmt)
nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{6+2+1}=\dfrac{180^0}{9}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{6}=20^0\\\dfrac{\widehat{B}}{2}=20^0\\\dfrac{\widehat{C}}{1}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=40^0\\\widehat{C}=20^0\end{matrix}\right.\)
Vậy: \(\widehat{A}=120^0\); \(\widehat{B}=40^0\); \(\widehat{C}=20^0\)
cho tam giác ABC vuông tại A ,có C =30 độ. BD là phân giác của tam giác ABC (D thuộc AC).Kẻ DH vuông góc BC(H thuộc BC) Tia BA cắt HD tại K
a) CM AD=DH
b) SO SÁNH AD và CD
c)CM D là trọng tâm của tam giác BKC
d)CM AD+AK> KC/2
a) Xét tam giác ABD và tam giác HBD có :
\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)
\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )
Chung BD
\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )
\(\Rightarrow AD=DH\left(đpcm\right)\)
b) Xét tam giác DHC vuông tại H có \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )
Mà \(AD=DH\)( câu a )
\(\Rightarrow AD< CD\)
c) \(\widehat{ABC}=180^o-90^o-30^o=60^o\)
Ta có BD là tia phân giác \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)
Xét tam giác BDC có \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)
\(\Rightarrow\)tam giác BDC cân tại D
Mà DH là đường cao \(\left(DH\perp BC\right)\)
\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC
\(\Rightarrow BH=HC\)
Xét tam giác KBH và tam giác KCH có :
\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)
BH = HC
Chung KH
\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)
\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều
\(\Rightarrow\widehat{BKC}=60^o\)
Từ (1) \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)
\(\Rightarrow\widehat{BKH}=30^o\)
Xét tam giác BDK có \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)
\(\Rightarrow\Delta BDK\)cân tại D
Mà AD là đường cao \(\left(AD\perp BK\right)\)
\(\Rightarrow\)AD là trung tuyến tam giác BDK
\(\Rightarrow BA=AK\)
Xét \(\Delta KBC\)có
KH là trung tuyến ( BH = HC )
CA là trung tuyến ( BA = AK )
KH và CA cắt nhau tại D
\(\Rightarrow\)D là trọng tâm tam giác BKC
d) Ta có \(\frac{KB}{2}=AK\)( do AB = AK )
\(AD+AK>\frac{KB}{2}\)
Mà KC = KB
\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)
Vậy ...
Cho tam giác ABC cân tại A. Vẽ AD vuông góc với AC (D thuộc BC).
CMR: AB2 + BC2 + AC2 = CD2 +2.AD2 +3.BD2
Bài 1: Cho tam giác ABC, trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H và K.
a) CMR: GH, EK, AB cắt nhau tại 1 điểm
b) CMR: AB = 4HK
Bài 2: Cho tam giác ABC có BD và CE là phân giác, cắt nhau tại I. Gọi S là trung điểm BC, biết BI = 2IS.
a) CMR: tam giác ABC vuông
b) CMR: ID / IB = CD / CB
Bài 3: Cho tam giác ABC vuông cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD = AE. Qua A và D, kẻ các đường thẳng vuông góc với BE cắt BC thứ tự tại S và T. CMR: S là trung điểm của TC
Cho tam giác ABC vuông tại A.Đường phân giác BD.Vẽ DH vuông góc với BC(H thuộc BC) chứng minh AD<DC
hình nháp thôi nha bạn :
Xét \(\Delta ABD\) và \(\Delta HBD\) vuông lần lượt tại A và H có :
\(BD:\) cạnh chung
\(\) góc \(ABD=\) góc \(HBD\)
Do đó : \(\Delta ABD=\Delta HBD\left(c.h-g.n\right)\)
\(\Rightarrow AD=HD\)
Xét \(\Delta HDC\) vuông tại H :
\(\Rightarrow DC>HD\) ( quan hệ giữa góc mà cạnh đối diện )
mà \(AD=HD\left(cmt\right)\)
\(\Rightarrow AD< DC\left(đpcm\right)\)