Chứng minh:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)> 32 \(^0\)/\(_0\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)
giúp mình với ạ, giải từng bước nhé ạ
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)
= 2/3 . 2/5 + 2/5 . 2/7 + ... + 2/99 . 2/101
= 2/3 - 2/5 + 2/5 - 2/7 + ... + 2/99 - 2/101
= 2/3 - 2/101
= 196/303
2/3 - 2/5 + 2/5 - 2/7 + 2/7 - 2/9 + .... + 2/97 - 2/99 + 2/99 - 2/101
= 2/3 - 2/101
= 196/303
Tính nhanh :
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....+\dfrac{2}{97.99}\)
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)
\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(M=2.\dfrac{32}{99}\)
\(M=\dfrac{64}{99}\)
http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp
\(m=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
a/ \(A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{99.100}\)
b/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)
c/ \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\)
d/ \(A=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2015}>4\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}\dfrac{2}{7.9}+.........+\dfrac{2}{99.101}\)
\(P=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
Câu 1:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
= \(\dfrac{1}{3}-\dfrac{1}{101}\)
= \(\dfrac{98}{303}\)
Câu 2 làm tương tự ở câu 1 nhé
CHO A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+.....+\dfrac{2}{97.99}\)
Tính A
\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+.....+\dfrac{2}{97.99}\)
Ta thấy:\(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{1.3
}\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{3.5}\)
............\(\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{2}{97.99}\)
\(\Rightarrow A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{97}-\dfrac{1}{99}\) =\(\dfrac{1}{1}-\dfrac{1}{99}\)
=\(\dfrac{99}{99}-\dfrac{1}{99}\)
=\(\dfrac{98}{99}\)
Vậy A=\(\dfrac{98}{99}\)
A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
A = \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A = \(1-\dfrac{1}{99}\)
A = \(\dfrac{98}{99}\)
A=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A=\(1-\dfrac{1}{99}=\dfrac{98}{99}\)
B= \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) +\(\dfrac{2}{5.7}\) +...+ \(\dfrac{2}{97.99}\) + \(\dfrac{2}{99.101}\)
\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
Giúp mình với
Ta có
M = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
M = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
M = \(\dfrac{1}{3}-\dfrac{1}{99}\)
M = \(\dfrac{32}{99}\)
Vậy M = \(\dfrac{32}{99}\)
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(M=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(M=\dfrac{1}{3}-\dfrac{1}{99}\)
\(M=\dfrac{32}{99}\)
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+................+\dfrac{2}{97.99}\)
\(M=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....................+\dfrac{1}{97}-\dfrac{1}{99}\)
\(M=\dfrac{1}{3}-\dfrac{1}{99}\)
\(M=\dfrac{32}{99}\)
\(\dfrac{2}{3.5}+\)\(\dfrac{2}{5.7}+\dfrac{2}{7.9}\)\(+...+\dfrac{2}{2015.2017}\)
`2/(3.5)+2/(5.7)+....+2/(2015.2017)`
`=1/3-1/5+1/5-1/7+....+1/2016-1/2017`
`=1/3-1/2017=2014/6051`
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)
\(=\dfrac{1}{3}-\dfrac{1}{2017}\)
\(=\dfrac{2017}{6051}-\dfrac{3}{6051}=\dfrac{2014}{6051}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)
\(=\dfrac{1}{3}-\dfrac{1}{2017}\)
\(=\dfrac{2014}{6051}\)
\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\) + ... + \(\dfrac{2}{2020.2022}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2020.2022}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}\)
\(=\dfrac{2021}{2022}\)