Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huy Hoàng Đỗ
Xem chi tiết
Sói Xông Lam
Xem chi tiết
Thắng Nguyễn
2 tháng 6 2017 lúc 7:17

Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath

Nguyễn Võ Anh Nguyên
Xem chi tiết
Hoàng Minh Hoàng
31 tháng 7 2017 lúc 9:47

x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.

A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)

Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3

dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3

suy ra A<1/3.3=1(đpcm)

nguyh huy
Xem chi tiết
Đặng Viết Thái
30 tháng 5 2019 lúc 19:43

\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)

nguyh huy
30 tháng 5 2019 lúc 19:59

Đặng Viết Thái tử đúng rồi còn mẫu không có căn

nguyh huy
30 tháng 5 2019 lúc 20:12

\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)

Nguyễn Anh Dũng An
Xem chi tiết
tth_new
1 tháng 9 2019 lúc 14:41

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

vinh nguyenmanh
Xem chi tiết
JOKER_Mizukage Đệ tứ
Xem chi tiết
Thắng Nguyễn
23 tháng 5 2016 lúc 22:27

\(xy+yz+xz\le x^2+y^2+z^2\le3\)

\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu"=" xảy ra khi x=y=z=1

Vậy...

Thắng Nguyễn
23 tháng 5 2016 lúc 22:15

MIn=3/2 khi x=y=z=1

New_New
23 tháng 5 2016 lúc 22:20

\(P\ge\frac{9}{1+xy+1+yz+1+zx}=\frac{9}{3+\left(xy+yz+zx\right)}\)

Mà \(xy+yz+zx\le x^2+y^2+z^2\le3\)

\(P\ge\frac{9}{3+3}=\frac{3}{2}\)

Dấu bằng xảy ra khi x=y=z=1

Luyri Vũ
Xem chi tiết
dia fic
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2021 lúc 10:38

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

Huy Nguyen
17 tháng 1 2021 lúc 18:31

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.