Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Nguyen Thi Trinh
31 tháng 5 2017 lúc 11:13

ĐKXĐ: \(x\ne\pm3,x\ne\dfrac{9}{2}\)

= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{2x-9}.\dfrac{3\left(x-3\right)-x}{x\left(x-3\right)}\right]\) : \(\dfrac{x^2-5x-6}{-2\left(x-3\right)\left(x+3\right)}\)

= \(\left[\dfrac{x}{2\left(x-3\right)}-\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x-3}\right]:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{x\left(x+3\right)-2x^2+2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}:\dfrac{-\left(x^2-5x-6\right)}{2\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}{-2\left(x^2-5x-6\right)\left(x-3\right)\left(x+3\right)}=1\)

Duong Thi Nhuong
Xem chi tiết
Hung nguyen
3 tháng 5 2017 lúc 11:25

\(E=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\left(\dfrac{2x+3}{\left(x+1\right)^2}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\left[\dfrac{x^2+7x}{x\left(x+1\right)^2}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)

\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}\)

\(=\dfrac{2x\left(2x+5\right)}{x\left(x+1\right)^2}.\dfrac{x^2+x}{3x+1}=\dfrac{2x\left(2x+5\right)}{\left(x+1\right)\left(3x+1\right)}\)

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 10:04

\(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)

Zi Heo
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 10:39

\(A=\dfrac{2x^2\left(3x-4y+2\right)}{x\left(3x+y\right)\left(3x-y\right)}=\dfrac{2x\left(3x-4y+2\right)}{\left(3x+y\right)\left(3x-y\right)}\\ A=\dfrac{2\left(3-8+2\right)}{\left(3+2\right)\left(3-2\right)}=\dfrac{2\left(-3\right)}{5}=\dfrac{-6}{5}\)

Duong Thi Nhuong
Xem chi tiết
Mỹ Duyên
27 tháng 5 2017 lúc 11:42

Haizzzzzzzzzzz! huhu

ĐKXĐ: \(x\ne0;\dfrac{-1}{2};\dfrac{1}{2}\)

\(\left(\dfrac{1+x}{x}+\dfrac{1}{4x^2}\right)\left(\dfrac{1-2x}{1+2x}-\dfrac{1}{1-4x^2}.\dfrac{1-4x+4x^2}{1+2x}\right)-\dfrac{1}{2x}\)

=

\(\dfrac{4x\left(x+1\right)+1}{4x^2}.\left[\dfrac{\left(1-2x\right)\left(1+2x\right)}{\left(2x+1\right)^2}-\dfrac{1}{\left(1-2x\right)\left(1+2x\right)}.\dfrac{\left(1-2x\right)^2}{1+2x}\right]\)\(-\dfrac{1}{2x}\)

= \(\dfrac{\left(2x+1\right)^2}{4x^2}.\left(\dfrac{1-4x^2}{\left(2x+1\right)^2}-\dfrac{1-2x}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)

= \(\dfrac{\left(2x+1\right)^2}{4x^2}.\dfrac{2x\left(1-2x\right)}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)

= \(\dfrac{1-2x}{2x}-\dfrac{1}{2x}=\dfrac{-2x}{2x}=1\)

juihdfshd
Xem chi tiết
Trang Thùy
20 tháng 1 2019 lúc 21:38

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

Trang Thùy
20 tháng 1 2019 lúc 21:56

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

Trang Thùy
20 tháng 1 2019 lúc 22:08

c, \(\dfrac{2x}{3}+\dfrac{3x-5}{4}=\dfrac{3\left(2x-1\right)}{2}-\dfrac{7}{6}\)

\(\dfrac{8x}{12}+\dfrac{9x-15}{12}=\dfrac{18x-9}{6}-\dfrac{7}{6}\)

\(\dfrac{17x-15}{12}=\dfrac{18x-16}{6}\)

\(\dfrac{17x-15}{12}-\dfrac{18x-16}{6}=0\)

\(\dfrac{17x-15}{12}-\dfrac{36x-32}{12}=0\)

⇔ 17x - 15 - 36 + 32 = 0

⇔ 17 - 19x = 0

⇔ 19x = 17

⇔ x = \(\dfrac{17}{19}\)

nguyễn thái hồng duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2022 lúc 20:20

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

G.Dr
Xem chi tiết
Hồng Phúc
16 tháng 3 2021 lúc 18:55

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

mai
Xem chi tiết
Không Tên
23 tháng 3 2017 lúc 20:30

a)

\(Q=\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\\ =\left(\dfrac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}\right)\left(\dfrac{2+x-x^2}{x^2}\right)\\ =\dfrac{x\left(x-2\right)^2\left(x+2\right)\left(x+1\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\)

\(=\dfrac{\left(x^2-4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)