Cho a,b,c không âm, a+b+c=1
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le6\)
Cho a, b, c > 0 có a + b + c = 3. Chứng minh: \(\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le6\)
\(a+b+c=3\\ \Leftrightarrow a\left(b+c+2\right)=ab+ac+a+b+c+1=\left(a+1\right)\left(b+c+1\right)\)
Tương tự:
\(b\left(c+a+2\right)=\left(b+1\right)\left(a+c+1\right)\\ c\left(a+b+2\right)=\left(c+1\right)\left(a+b+1\right)\)
Áp dụng BĐT cosi:
\(\left\{{}\begin{matrix}\left(a+1\right)\left(b+c+1\right)\le\dfrac{\left(a+1+b+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(b+1\right)\left(a+c+1\right)\le\dfrac{\left(b+1+a+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(c+1\right)\left(a+b+1\right)\le\dfrac{\left(c+1+a+b+1\right)^2}{2}=\dfrac{2^2}{2}=2\end{matrix}\right.\)
Cộng vế theo vế 2 BĐT trên:
\(\Leftrightarrow\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le2+2+2=6\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Bunhiacopski:
\(VT^2=\left(\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(a+c+2\right)}+\sqrt{c\left(a+b+2\right)}\right)^2\\ \le\left(a+b+c\right)\left(b+c+2+a+c+2+a+b+2\right)\\ =3\cdot\left(2\cdot3+6\right)=36\\ \Leftrightarrow VT\le\sqrt{36}=6\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{b+c+2}}{\sqrt{a}}=\dfrac{\sqrt{a+c+2}}{\sqrt{b}}=\dfrac{\sqrt{a+b+2}}{\sqrt{c}}\\a+b+c=3\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=1\)
a) cho a,b,c không âm ; a+b+c=1 . tìm Max S
biết \(S=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{a+c}\)
b)a,b,c,d không âm ; a+b+c+d=1,tìm Max S
Biết \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\)
Cho a,b,c>0 và a+b+c=1
CMR
1, \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le6\)
2,\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
3,\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
CHo ba số a , b , c không âm đôi một khác nhau . Chứng minh rằng :
\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}.\frac{\sqrt{b}+\sqrt{c}}{\sqrt{b}-\sqrt{c}}.+\frac{\sqrt{b}+\sqrt{c}}{\sqrt{b}-\sqrt{c}}.\frac{\sqrt{c}+\sqrt{a}}{\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c}+\sqrt{a}}{\sqrt{c}-\sqrt{a}}.\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=-1\) .
a)Cho a,b,c \(\ge\)0, a+b+c\(\le\)1.Chứng minh rằng:\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
b)Cho a,b,c \(\ge\)0, a+b+c\(\le\)6.Chứng minh rằng: \(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\le6\)
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)
\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)
\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)
\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)
\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)
Xảy ra khi \(a=b=c=2\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR:
\(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
cho a,b,c >0 tm a+b+c=3
CMR: \(\sqrt{1+a^2+2bc}+\sqrt{1+b^2+2ac}+\sqrt{1+c^2+2ab}\le6\)
đặt A=...
Áp dúng bất đẳng thức bu nhi a ta có
\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)
=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
Câu 4: Cho a,b,c là các số không âm và a+b+c=1. Chứng minh: \(\sqrt{a+1}\)+ \(\sqrt{b+1}\) + \(\sqrt{c+1}\) < 3,5
\(A=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\Rightarrow A^2=\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\Rightarrow A^2\le\left(1+1+1\right)\left(\sqrt{a+1}^2+\sqrt{b+1}^2+\sqrt{c+1}^2\right)\left(bunhiacopxki\right)\)
\(\Rightarrow A^2\le\left(1+1+1\right)\left(a+1+b+1+c+1\right)\)
\(\Rightarrow A^2\le3\left(a+b+c+3\right)=3.4=12\Rightarrow A\le\sqrt{12}< 3,5\left(dpcm\right)\)
Cho a+b+c=3 và a,b,c>0 . CMR \(\sqrt{a+3b}+\sqrt{b+3c}+\sqrt{c+3a}\le6\)
Theo BĐT Bu nhi a cốp xki ta có :
\(VT=\sqrt{a+3b}+\sqrt{b+3c}+\sqrt{c+3a}\le\sqrt{3\left(4a+4b+4c\right)}=\sqrt{12\left(a+b+c\right)}=\sqrt{36}=6\)
Vậy đpcm . Dấu bằng xảy ra khi \(a=b=c=1\)