tìm min của A=a^4-2a^3+3a^2-4a+5
Tìm GTNN của : a^4 - 2a^3 + 3a^2 - 4a + 5
Tìm giá trị nhỏ nhất của biểu thức A :
A= \(a^4-2a^3+3a^2-4a+5\)
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
1,tìm giá trị nhỏ nhất của A=a^4-2a^3+3a^2-4a+5
A=a^4 -2a^3 + 3a^2 -4a+5
A=(a^4 -2a^3 +a^2)+(2a^2 -4a+2)+3
A=(a^2 -a)^2 +2(a^2 -2a+1)+3
A=((a^2 -a)^2 +2(a-1)^2 +3
Vì (a^2 -a)^2 +2(a-1)^2 +3 >hoặc=3 với mọi a.Dấu"=" xảy ra khi a=1
Hay:A>hoặc=3.Dấu"=" xảy ra khi a=1
Vậy giá trị nhỏ nhất A=3 tại a=1. Bạn nhớ nếu nó hỏi Min thì mới kết luận là Min còn hỏi GTNN thì kết luận GTNN.
a) \(Q=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}-x\)
Tìm Max ( Min nếu có ) của Q
b) Tìm Min \(K=a^4-2a^3+3a^2-4a+5\)
tìm min của A =a4-2a3-4a+5
Tìm GTNN của biểu thức \(A=a^4-2a^3+3a^2-4a+5.\)
A=(a4-2a3+a2) +2(a2-2a+1) +3
=(a2-a)2 + 2(a-1)2 + 3 \(\ge\)3
Dấu bằng xay ra khi a=1
A=a4 -2a3 +3a2 -4a +5
=a4 -2a3 +a2 +2a2-4a+2+3
=(a4 -2a3 +a2) +2(a2 -2a +1)+3
=(a2-a)2 +2(a-1)2 +3
\(\hept{\begin{cases}\left(a^2-a\right)^2\ge3\\2\left(a-1\right)^2\ge3\end{cases}\Rightarrow A_{Min}=3}\)
Tìm \(A_{min}=a^4-2a^3-4a+5\)
tìm a ( a^4 +3a^2+2)x=(2a^3+2a)x+2a^3-4a^2+4a với a là 1 hằng số
giúp mik gấp đc ko ạ
tìm GTNN của biểu thức A=\(a^4-2a^3+3a^2-4a+5\)