Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiệu
Xem chi tiết
Le Thi Khanh Huyen
8 tháng 9 2016 lúc 20:27

Ta luôn có 

\(x^2+2xy+y^2=\left(x+y\right)^2\) ( hẳng đẳng thức )

\(\Rightarrow A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(3a-2b\right)^2\)

\(=\left[\left(2a-3b\right)+\left(3a-2b\right)\right]^2\)

\(=\left(2a-3b-2b+3a\right)^2\)

\(=\left(a-b\right)^2\)

\(=10^2\)

\(=100\)

Tuấn Nguyễn
Xem chi tiết
HoàngThống Nguyễn
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Hung nguyen
24 tháng 4 2018 lúc 9:11

\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)

PS: Còn cách dùng holder nữa mà lười quá

Lightning Farron
24 tháng 4 2018 lúc 16:49

holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath

Lê Minh Đức
Xem chi tiết
Thắng Nguyễn
13 tháng 4 2017 lúc 18:14

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

Nguyễn Xuân Dương
3 tháng 5 2020 lúc 9:32

ok jjj

Khách vãng lai đã xóa
Tran Le Khanh Linh
3 tháng 5 2020 lúc 9:33

Đặt \(\frac{a}{b}=t\)do a>0, b>0 nên t>0

Khi đó BĐT \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2}{3b^3}+\frac{2b^2+3a^2}{2b^3+3a^2}\le\frac{4}{a+b}\left(1\right)\)trở thành

\(\frac{2t^2+3}{2t^3+3}+\frac{2+3t^2}{3+3t^3}\le\frac{4}{t+1}\)

\(\Leftrightarrow\left(2t^2+3\right)\left(2+3t^2\right)\left(t+1\right)+\left(2+3t^2\right)\left(2t^2+1\right)\left(t+1\right)\le4\left(2t^3+3\right)\left(2+3t^2\right)\)

\(\Leftrightarrow\left(t+1\right)\left(12t^5+13t^3+13t^2+12\right)\le4\left(6t^6+13t^3+6\right)\)

\(\Leftrightarrow12\left(t^6-t^5-t+1\right)-13t^2\left(t^2-12t+1\right)\ge0\)

\(\Leftrightarrow12\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\left(2\right)\)

Ta có \(12\left(t^4+t^3+t^2+t+1\right)-13t^2=12t^4+12t\left(t-1\right)^2+23t^2+12>0\forall t>0\)

BĐT (2) đúng với mọi t>0

=> BĐT (1) đúng với mọi a,b>0

Dấu "=" xảy ra <=> t=1 <=> a=b

Khách vãng lai đã xóa
Lê Minh Đức
Xem chi tiết
Mai Thị Thùy
4 tháng 9 2021 lúc 20:24
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
Khách vãng lai đã xóa
Nguyễn Thị Thu Hải
Xem chi tiết
Đặng Cường Thành
27 tháng 3 2020 lúc 22:38

Vì 5 là 1 số nguyên tố ⇒ Ít nhất 1 trong 2 số (3a+2b) và(2a+3b) phải chia hết cho 5.

Không mất tính tổng quát, giả sử (3a+2b) ⋮ 5

5(a+b) đương nhiên chia hết cho 5 ⇒5(a+b)-(3a+2b) ⋮ 5

Hay (2a+3b) ⋮ 5

Vậy, nếu (3a+2b)*(2a+3b) ⋮ 5 thì (3a+2b)*(2a+3b) ⋮ 25 (ĐPCM)

Khách vãng lai đã xóa
Anh Pha
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết