Cho a - b = 10 . Tính:
A = ( 2a - 3b )2 +2( 2a - 3b )( 3a - 2b ) + ( 2b - 3a )2
Cho a-b=10.Hãy tính
A=(2a-3b)\(^2\)+2(2a-3b)(3a-2b)+(2b-3a)\(^2\)
Ta luôn có
\(x^2+2xy+y^2=\left(x+y\right)^2\) ( hẳng đẳng thức )
\(\Rightarrow A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(3a-2b\right)^2\)
\(=\left[\left(2a-3b\right)+\left(3a-2b\right)\right]^2\)
\(=\left(2a-3b-2b+3a\right)^2\)
\(=\left(a-b\right)^2\)
\(=10^2\)
\(=100\)
Cho a-b=10. Tính:
\(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a+2b\right)+\left(2b-3a\right)^2\)
cm (2a^2+3b^2)/(2a^3+3b^3)+(2b^2+3a^2)/(2b^3+3a^3)<=4/(a+b)
Cho a, b, c dương. CMR: \(\dfrac{2a^2+3b^2}{2a^3+3b^3}+\dfrac{2b^2+3a^2}{2b^3+3a^3}\le\dfrac{4}{a+b}\)
\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)
PS: Còn cách dùng holder nữa mà lười quá
holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Cho a, b là các số dương. CMR: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)
Áp dụng BĐT Holder ta có:
\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)
Vậy ta có thể viết lại BĐT cần chứng minh như sau;
\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)
Nó đủ để ta có thể thấy rằng
\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)
\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)
BĐT cuối cùng đúng nên ta có ĐPCM
Đặt \(\frac{a}{b}=t\)do a>0, b>0 nên t>0
Khi đó BĐT \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2}{3b^3}+\frac{2b^2+3a^2}{2b^3+3a^2}\le\frac{4}{a+b}\left(1\right)\)trở thành
\(\frac{2t^2+3}{2t^3+3}+\frac{2+3t^2}{3+3t^3}\le\frac{4}{t+1}\)
\(\Leftrightarrow\left(2t^2+3\right)\left(2+3t^2\right)\left(t+1\right)+\left(2+3t^2\right)\left(2t^2+1\right)\left(t+1\right)\le4\left(2t^3+3\right)\left(2+3t^2\right)\)
\(\Leftrightarrow\left(t+1\right)\left(12t^5+13t^3+13t^2+12\right)\le4\left(6t^6+13t^3+6\right)\)
\(\Leftrightarrow12\left(t^6-t^5-t+1\right)-13t^2\left(t^2-12t+1\right)\ge0\)
\(\Leftrightarrow12\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\)
\(\Leftrightarrow\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\left(2\right)\)
Ta có \(12\left(t^4+t^3+t^2+t+1\right)-13t^2=12t^4+12t\left(t-1\right)^2+23t^2+12>0\forall t>0\)
BĐT (2) đúng với mọi t>0
=> BĐT (1) đúng với mọi a,b>0
Dấu "=" xảy ra <=> t=1 <=> a=b
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
cho 2 số nguyên a,b thỏa man:(3a+2b)*(2a+3b) chia hết cho 5
chứng minh (3a+2b)*(2a+3b) chia hết cho 25
Vì 5 là 1 số nguyên tố ⇒ Ít nhất 1 trong 2 số (3a+2b) và(2a+3b) phải chia hết cho 5.
Không mất tính tổng quát, giả sử (3a+2b) ⋮ 5
5(a+b) đương nhiên chia hết cho 5 ⇒5(a+b)-(3a+2b) ⋮ 5
Hay (2a+3b) ⋮ 5
Vậy, nếu (3a+2b)*(2a+3b) ⋮ 5 thì (3a+2b)*(2a+3b) ⋮ 25 (ĐPCM)
Cho a,b là các số dương. CMR:
\(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
cho a,b là 2 số thực dương tm a+b=2 tìm min
P= \(\dfrac{2a^2+3b^2}{2a^3+3b^3}+\dfrac{2b^2+3a^2}{2b^3+3a^3}\)