Cho A=1+2^4+2^8+2^12+...+2^2016
B=1+2^+2^4+2^6+2^8+...+2^2018
Tìm tỉ số A/B
Cho A=1+2^4+2^8+2^12+...+2^2016
B=1+2^+2^4+2^6+2^8+...+2^2018
Tìm tỉ số A/B
a. So sanh 2 phan so:A= 2015/2016+2016/2017+2017/2018 va B = 2015+2016+2017/2016+2017+2018
b.1/2.4+1/4.6+........+1/(2x-2).2x = 1/8
c.Cho A = 1/4+1/9+1/16+...+1/81+1/100 . Chung minh rang : A > 65/132
d.Cho B = 12/(2 . 4 ) ^ 2 + 20/ (4 . 6) ^2 + ...........+ 388/ ( 96 . 98 ) ^ 2 + 396/ ( 98 . 100 ) ^2 .Hay so sanh B voi 1 /4
1. Cho số A= (4 + √15). (√10 - √6). √4 - √15
Vậy A là số vô tỉ hay số thực
2.So sánh A và B biết:
A= 2√1 + 2√3 + 2√5 +...+ 2√2017
B= 2√2 + 2√4 + 2√6 +...+ 2√2016 + √2018
A= 1-2+3-4+5-6+...+999-1000!
B= 2-4+6-8+10-12+...+2016-2018
C=1-32+33-34+...+32017
A=(1-2)+(3-4)+...+(999-1000)
có 1000 số hạng
A=(-1)+(*1)+...+(-1)
có 500 số hạng
A=-1*500
A=-500
bài 1 :
A= 1-2+3-4+5-6+......+999-1000!
B= 2-4+6-8+10-12+......+2016-2018
C= 1-32+33-34+.....+32017
cho a b c d là các số hữu tỉ thỏa mãn a^2+b^4+c^6+d^8=1 và a^2016+b^2017+c^2018+d^2019=1. tính giá trị của m =a^3-a+3b^4-3b+5c^3-5c+7d^6-7d
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0
cho các số hữu tỉ a,b,c,d thỏa mãn :a^2 +b^4 +c^6+d^8=1 và a^2016 +b^2017 +c^2018 + d^2019=1 .Tính \(M=a^3-a+3b^4-3b+5c^5-5c+7d^6-7d\)
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Ở link trên đã tìm đc các giá trị của a, b, c, d thay vào tìm đc M = 0.
tìm các số hữu tỉ a,b,c,d thỏa mãn điều kiện
\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
=> \(0\le a^2;b^4;c^6;d^8\le1\)
=> \(-1\le a;b;c;d\le1\)
=> \(a^{2016}\le a^2\); \(b^{2017}\le b^4\); \(c^{2018}\le c^6\); \(d^8\le d^{2019}\)
=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)
Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)
<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)
<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\); \(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\); \(\orbr{\begin{cases}d=0\\d=1\end{cases}}\); \(a^2+b^4+c^6+d^8=1\)
<=> \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).
Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????
Giải thích cho a nhé, b, c. d tương tự:
\(0\le a^2\le1\Leftrightarrow\hept{\begin{cases}a^2\ge0\left(đúng\right)\\a^2\le1\end{cases}\Leftrightarrow\left(1-a\right)\left(1+a\right)\ge0}\)
<=> \(-1\le a\le1\)
Tính nhanh
a) S1= 1+(-2)+3+(-4)+.......+2016+(-2017)
b) S2 = 2-4+6-8+..........+2016-2018