Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Anh
Xem chi tiết
Phan Cả Phát
Xem chi tiết
Akai Haruma
24 tháng 5 2018 lúc 18:00

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

Nguyễn Minh Hiền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 21:37

\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)

\(=x+y+z\)

Nguyễn Minh Hiền Trang
Xem chi tiết
Nguyễn Tuấn
16 tháng 3 2016 lúc 21:37

thay 1 vào tử, thấy: 
căn(5-x) = căn 4= 2; 
căn bậc 3(x^2+7)=căn bậc 3 của 8=2 
=> thêm bớt 2. 
Bài làm: 
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1) 
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1) 
Tính lim từng số hạng như thường.

Nguyễn Minh Hiền Trang
17 tháng 3 2016 lúc 20:42

Bạn trả lời rõ dùm mình với

Ly Phan
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 11 2018 lúc 21:06

\(VT=x^3+y^3+z^3-3xyz.\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)=VP\left(đpcm\right)\)

Bảo Ngọc cute
Xem chi tiết
Nguyễn Thị Hồng Nhung
23 tháng 9 2017 lúc 18:33

\(\dfrac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\dfrac{x\left(x+y\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{xy^2+2xyz+x^2z}.\dfrac{x^2+xy-xy-xy^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\\ =\dfrac{\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{2xy^2+4xyz+2x^2z}.\dfrac{x^2-xy^2}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2-xy\right)}{2xy^2+4xy+2x^2z}\)

@@ ko ra nữa

loan cao thị
Xem chi tiết
Đinh Thùy Linh
9 tháng 6 2016 lúc 6:28

a)

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right).\)

b) 

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=x^3+x^2y+x^2z+xy^2+y^3+y^2z+\)

\(+xz^2+yz^2+z^3-x^2y-xy^2-xyz-xyz-y^2z-yz^2-x^2z-xyz-xz^2=\)

\(=x^3+y^3+z^3-3xyz\)

Lenkin san
Xem chi tiết
Akai Haruma
16 tháng 7 2019 lúc 23:56

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

Hồ Minh Phi
Xem chi tiết