B1 :Tìm n thuộc N :
(33 : 9 )3n = 729
Tìm N thuộc n biết 1≤ 3n +1 ≤ 729
\(1\le3^{n+1}\le729\) \(\left(n\inℕ\right)\)
\(\Rightarrow3^0\le3^{n+1}\le3^6\)
\(\Rightarrow0\le n+1\le6\)
\(\Rightarrow-1\le n\le5\)
\(\Rightarrow n\in\left\{0;1;2;3;4;5\right\}\)
B1) Tìm ƯC của n + 1 và 3n + 4 với n thuộc tập hợp N.
B2) Tìm ƯC của 30n + 4 và 20n + 3 với n thuộc tập hợp N.
a; Gọi ƯCLN(n + 1; 3n + 4) = d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ 3n + 3 - 3n - 4 ⋮ d
⇒ (3n -3n) - (4 - 3) ⋮ d ⇒ 0 - 1⋮ d ⇒ 1 ⋮ d ⇒ d \(\in\) Ư(1) = 1
Vậy ƯCLN(n + 1; 3n + 4) = 1
ƯC(n +1; 3n +4) = 1
Gọi ƯCLN(30n + 4; 20n + 3) = d
Ta có: \(\left\{{}\begin{matrix}30n+4⋮d\\20n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}60n+8⋮d\\60n+6⋮d\end{matrix}\right.\) ⇒ 60n + 8 - 60n - 6 ⋮ d
⇒ (60n - 60n) +(8 - 6) ⋮ d ⇒ 0 +2 ⋮ d ⇒ 2 ⋮ d
⇒ d \(\in\) Ư(2)
Vậy Ước chung lớn nhất của (30n + 4 và 20n + 3) là 2
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
1/3+2/32+3/33+4/34+...+n/3n<3/4 tìm n biết(n thuộc n*,n>3
viết các số sau về dạng lũy thừa của 1 số tự nhiên:125;27;64;1296;1024;2401;43;8;25.125
tìm n là số tự nhiên,biết
2n=16 3n=81 2n-1=64 3n+2=27.81 25.5n-1=625
2n.8=128 3.5n=375 (3n)2=729 81≤3n≤729 (2n-1)4=81
(n-2)3=125 (n-1)5=32.243
bài khó quá ,giúp mình với
1. (Mình đưa nó về thừa số nguyên tố nha, cái nào ko đc thì thôi)
125 = 53; 27 = 33; 64 = 26; 1296 = 64; 1024 = 210; 2401 = 74; 43 = 64; 8 = 23; 25.125 = 3125 = 55.
2.
2n = 16 =) n = 4. 3n = 81 =) n = 4. 2n-1 = 64 =) n = 7. 3n+2 = 27.81 =) n = 5. 25.5n-1 = 625 =) n = 3.
2n.8 = 128 =) n = 4. 3.5n = 375 =) n = 3. (3n)2 = 729 =) n = 3. 81 ≤ 3n ≤ 729 =) n = 4; 5; 6.
\(125=5^3;27=3^3;1296=36^2=6^4=2^4.3^4;1024=32^2=2^{10};2401=49^2=7^4;4^3=2^6;8=2^3;25.125=5^2.5^3=5^5\)
B1) Chứng tỏ 2 số 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc tập hợp N*
B2) Cho 5n + 6 và 8n+ 7. Tìm ƯCLN của chúng với mọi n thuộc tập N.
Gọi d là UCLN(2n+3,3n+5)
\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=>d = 1
=>UCLN(2n+3,3n+5) = 1
=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Gọi d là UCLN(5n+6,8n+7)
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)
\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1;13\right\}\)
Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)
=> UCLN(5n+6,8n+7) = 1
B1) Gọi d là UCLN của (2n+3) và (3n+5)
Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d
=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1
Vậy chúng là 2 số nguyên tố cùng nhau.
B2) Cách giải tương tự.
B1) Tính nhanh
A=1-3+5-7+9-11+...+49-51
B=[(-2^3-11).(-2016)^0].[(-4)^3+8^2]
B2) Tìm n thuộc Z
a) 2n+1 chia hết n-5
b)3n-5 chia hết n-2
Bài 1:
A = 1 - 3 + 5 - 7 + 9 - 11 + ... + 49 - 51
=> A = (1 - 3) + (5 - 7) + (9 - 11) + ... + (49 - 51)
=> A = (-2) + (-2) + (-2) + ... + (-2)
có 13 số -2
=> A = (-2).13
=> A = -26
B1:So Sánh
a,9^8.5^16 và 19^20
b,71^50 và 37^75
B2:tìm n thuộc N biết
a,3n+2 chia hết cho n-1
b,5n+7chia hết cho 3n+2
B3:CMR
a,A=999993^1999-555557^1997 chia hết cho 5
b,B=2012+2012 ^2+2012^3+.........+2012^2010 chia hết cho 2013
Tìm n thuộc N biết (3^3:9.3^n =729
33:9.3n=729
27:9.3n=729
3.3n=729
3n=729:3
3n=243
3n=35
=>n=5