Tìm các cặp số nguyên x,y thỏa mãn:
x^3y+xy^3+2x^2y^2-4x-4y+4=0.
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
tìm các cặp (x,y) dương thỏa mãn
\(2x^2+2y^2-x^2y^2-6xy-4x+4y+10=0\)
sao cho xy đạt GTNN
bạn nhóm thành các bình phương nhé. còn dư 4xy với 1.
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm all các cặp số nguyên dương(x,y) thỏa mãn 2x^2-xy-x-2y+1=0
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)
Tìm các cặp số nguyên x,y, thỏa : x2 -2y2 +xy +2x +4y -5=0
1. Số các cặp số nguyên (x,y) thoả mãn x+y+xy=3 là .....
2. Số phần tử của tập hợp các số x thỏa mãn lx-2,5l + l3,5 - xl = 0 là {
3. Số cặp số dương a và b thỏa mãn 1/a - 1/b =1/a-b là
4. cho (x,y) thỏa mãn 2x-3y/x+2y=2/3.Giá trị của tỉ số y/x bằng ...
Tìm các cặp số nguyên x, y thỏa mãn đẳng thức sau:
a) 2x2 + 3xy - 2y2 = 7
b) 4x3 - y2 - 4y - 11 = 0