BT1 :Cho n là số nguyên không chia hết cho 3 . Cmr:
\(\left(3^{2n}+3^n+1\right)⋮13\)
CMR nếu n là số nguyên dương không chia hết cho 3 thì A=32n+3n+1 chia hết cho 13
Cho n là số nguyên không chia hết cho 3. cmr : P=32n + 3n + 1 chia hết cho 13
Xét n = 3k + 1 với k nguyên ta có :
\(P=3^{2\left(3k+1\right)}+3^{3k+1}+1=9^{3k+1}+3^{3k+1}+1\)
\(=9^{3k+1}-9+27^k.3-3+13\)\(=9\left(729^k-1\right)+3\left(27^k-1\right)+13\)
Ta có : \(\left(729^k-1\right)⋮\left(729-1\right)⋮13\forall x\in Z\) và \(\left(27^k-1\right)⋮\left(27-1\right)⋮13\forall x\in Z\)
\(\Rightarrow9\left(729^k-1\right)+3\left(27^k-1\right)+13⋮13\)
Hay P chia hết cho 13
Xét tương tự với \(n=3k+2\) ta có đpcm
CMR Biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi n là số nguyên
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
Cho n là số nguyên ko chia hết cho 3. Cmr:
\(3^{2n}+3^n+1\)chia hết cho 13
Cho n là số nguyên ko chia hết cho 3. Cmr:
\(3^{2n}+3^n+1\)chia hết cho 13
Ta có:
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
Bài 2: A=3^ (2*n) + 3^n + 1
n không chia hết cho 3 nên ta xét 2 trường hợp:
* n =3k +1:
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1
= 9.(26+1)^2k + 3.(26 +1)^k +1
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13)
vậy A chia hết cho 13.
( Mình giải thích thêm nhé:
(2.13 +1)^2k chia cho 13 dư 1
=> 9(2.13 +1)^2k chia cho 13 dư 9
(2.13 +1)^k chia 13 dư 1
=> 3.(2.13 +1)^k chia 13 dư 1
=> A chia 13 dư 9 + 3 +1 = 13
A = 13.k +13 với k nguyên
A/13 = k + 1 la số nguyên => A chia hết cho 13
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.)
* n = 3k +2:
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13)
vậy A chia hết cho 13
=> đpcm
Ta có:
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
Bài 2: A=3^ (2*n) + 3^n + 1
n không chia hết cho 3 nên ta xét 2 trường hợp:
* n =3k +1:
A = 3^ (6k + 3) + 3^(3k +1) +1= 9.27^2k +3.27^ +1
= 9.(26+1)^2k + 3.(26 +1)^k +1
= 9(2.13 +1)^2k + 3.(2.13 +1)^k +1
A đồng dư với (9 +3 +1)= 13 theo đồng dư 0 theo (mod 13)
vậy A chia hết cho 13.
( Mình giải thích thêm nhé:
(2.13 +1)^2k chia cho 13 dư 1
=> 9(2.13 +1)^2k chia cho 13 dư 9
(2.13 +1)^k chia 13 dư 1
=> 3.(2.13 +1)^k chia 13 dư 1
=> A chia 13 dư 9 + 3 +1 = 13
A = 13.k +13 với k nguyên
A/13 = k + 1 la số nguyên => A chia hết cho 13
khi triển khai (x+1)^n = thì các hạng tử đều chứa x trừ hạng tử cuối = 1 nên (x+1)^n chia cho x dư 1.)
* n = 3k +2:
A = 3^(6k +4) + 3^(6k +2) +1=81.27^2k +9.27^k +1
= 81.(2.13+1)^2k + 9(2.13 +1)^k +1
A đồng dư với ( 81 + 9 +1) = 91 đồng dư 0 theo (mod 13)
vậy A chia hết cho 13
=> đpcm
Cho n là số nguyên không chia hết cho 3. Chứng minh rằng:
P = 32n + 3n + 1 chia hết cho 13.
Câu hỏi của Minh Nguyệt - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo.
1. C/M phân số tối giản : \(\frac{15n^2+8n+6}{30n^2+21n+13}\)
2. Cho a không chia hết cho 2 và 3. CMR \(4a^2+3a+5\)chia hết cho 6
3. Rìm n sao cho \(n^2+9n-2\)chia hết cho 11
4. CM:a. \(5^n\left(5^4+1\right)-6^n\left(3^n+2^n\right)\)chia hết cho 91
b.\(6^{2n}+19^n-2^{n+1}\)chia hết cho 17
5. Cho 2n + 1 và 3n + 1 là số chính phương. CMR: 5n + 3 là hợp số
6. Tìm n là STN để:
a. n + 11 chia hết cho n + 1
b. \(n^2+n+1\)chia hết cho n + 1
Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6