Rút gọn các phân thức sau
i) 8xy/32y
ii) 4x+10/2x^2+5
iii) 3x-6/4-x^2
bài 1:rút gọn biểu thức
a)(x+3)^2+(x-3)^2+2(x^2-9)
b)(4x-1)^3-(4x-3)(16x^2+3)
bài 2:phân tích đa thức thành nhân tử
a)16x-8xy+xy^2
b)3(3-x)=2x(x-3)
c)3x^2+4x-4
bài 3:tìm x,biết:
a)(3x-2)(3x+4)-(2-3x)^2=6
b)2(x-3)-(x-3)(3x-2)=0
c)(x-1)(x+2)-x(x-2)=-5
Bài 1 :
a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)
\(=x^2+6x+9+x^2-6x+9+2x^2-18\)
\(=4x^2\)
b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)
Bài 2 :
a, \(16x-8xy+xy^2=x\left(16-8y+y^2\right)=x\left(4-y\right)^2\)
b, \(3\left(3-x\right)-2x\left(x-3\right)=3\left(3-x\right)+2x\left(3-x\right)=\left(3+2x\right)\left(3-x\right)\)
c, \(3x^2+4x-4=3x^2+6x-2x-4=\left(x+2\right)\left(3x-2\right)\)
Rút gọn biểu thức
a) ( x + 3 )2 + ( x - 3 )2 + 2( x2 - 9 )
= x3 + 6x + 9 + x2 - 6x + 9 + 2x2 - 18
= 4x2
b) ( 4x - 1 )3 - ( 4x - 3 )( 16x2 + 3 )
= 64x3 - 48x2 + 12x - 1 - ( 64x3 - 48x2 + 12x - 9 )
= 64x3 - 48x2 + 12x - 1 - 64x3 + 48x2 - 12x + 9
= 8
PTĐTTNT
a) 16x - 8xy + xy2
= x( 16 - 8y + y2 )
= x( 4 - y )2
b) 3( 3 - x ) ± 2x( x - 3 ) < không biết thay dấu gì (: >
= 3( 3 - x ) \(\mp\)2x( 3 - x )
= ( 3 - x )( 3 \(\mp\)2x )
c) 3x2 + 4x - 4
= 3x2 + 6x - 2x - 4
= 3x( x + 2 ) - 2( x + 2 )
= ( x + 2 )( 3x - 2 )
Tìm x
a) ( 3x - 2 )( 3x + 4 ) - ( 2 - 3x )2 = 6
<=> ( 3x - 2 )( 3x + 4 ) - ( 3x - 2 )2 = 6
<=> ( 3x - 2 )( 3x + 4 - 3x + 2 ) = 6
<=> ( 3x - 2 ).6 = 6
<=> 3x - 2 = 1
<=> x = 1
b) 2( x - 3 ) - ( x - 3 )( 3x - 2 ) = 0
<=> ( x - 3 )( 2 - 3x + 2 ) = 0
<=> ( x - 3 )( 4 - 3x ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\4-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{3}\end{cases}}\)
c) ( x - 1 )( x + 2 ) - x( x - 2 ) = -5
<=> x2 + x - 2 - x2 + 2x = -5
<=> 3x - 2 = -5
<=> 3x = -3
<=> x = -1
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
Cho biểu thức B=(x/x^2-x-6 - x-1/3x^2-4x-15):x^4-2x^2+1/3x^2+11x+10. Rút gọn B
\(y=\frac{\frac{^x}{x^2}-x-6-x-\frac{1}{3}x^2-4x-15}{x^4}-2x^2+\frac{1}{3}x^2+11x+10b\)
\(y=\frac{-\left(5x^7-33x^6-30bx^5+x^3+18x^2+63x-3\right)}{3x^5}\)
Rút gọn biểu thức P= |3x-6|-3x+5. Với x≥2 Q=|8-2x|+3x+8. Với x≥4 R= 4x+5-4|x+5|. Với x≤5
+) \(P=3x-6-3x+5=-1\)
+) \(Q=2x-8+3x+8=5x\)
+) R bạn xem lại điều kiện
Ta có: P=|3x-6|-3x+5
=3x-6-3x+5
=-1
Ta có: Q=|8-2x|+3x+8
=2x-8+3x+8
=5x
rút gọn các biểu thức sau:
(3x+4)2+(4x-1)2+2x+5(2x-5)
(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)
(3x+4)2 +(4x -1 )2 + 2x + 5(2x-5)
= 9x2+24x+16 + 16x2-8x+1 + 2x + 10x - 25
= 25x2 + 28x - 8
b. (2x+1)(4x2 -2x + 1 ) + ( 2-3x ) ( 4+ 6x + 9x2 )
= 8x3 + 1 + 8-27x3
= -19x3 +9
Cho biểu thức B=(x/x^2-x-6 - x-1/3x^2-4x-15) : x^4-2x^2+1/3x^2+11x+10. Rút gọn B
Bài 3: Rút gọn các biểu thức sau:
1) ( x+ 3)(x2 -3x + 9) - (x3 + 54)
2) (2x + y)(4x2 + 2xy + y2 ) - (2x – y)(4x2 + 2xy + y2 )
3) (x – 1)3 – (x + 2)(x2 -2x +4) +3(x +4)(x – 4)
4) x(x + 1)(x - 1) – (x + 1)(x2 – x +1)
5) 8x3 - 5 (2x + 1)(4x2 – 4x + 1)
6) 27 + (x – 3)(x2 +3x + 9)
7) (x – 1)3 – (x +2)(x2 -2x + 4) +3(x +4)(x -4)
8) (x – 2)3 +6( x – 1)2 –(x +1)(x2 -x +1) +3x
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)
Rút gọn các biểu thức sau:
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
Bài 1 Rút gọn biểu thức
a, [(3x - 2)(x + 1) - (2x + 5)(x2 - 1)] : (x + 1)
b, (2x + 1)2 - 2(2x + 1)(3 - x) + (3 - x)2
c, (x - 1)2 - (x + 1) (x2 - x + 1) - (3x + 1)(1 - 3x)
d, (x2 + 1)(x - 3) - (x - 3)(x2 + 3x + 9)
e, (3x +2)2 + (3x - 2)2 - 2(3x + 2)(3x - 2) + x
Bài 2 Phân tích các đa thức sau thành nhân tử
1, 3(x + 4) - x2 - 4x
2, x2 - xy + x - y
3, 4x2 -25 + (2x + 7)(5 - 2x)
4, x2 + 4x - y2 + 4
5, x3 - x2 - x + 1
6, x3 + x2y - 4x - 4y
7, x3 - 3x2 + 1 - 3x
8, 2x2 + 3x - 5
9, x2 - 7xy + 10y2
10, x3 - 2x2 + x - xy2