Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NgDQ
Xem chi tiết
Ngọc
31 tháng 3 2023 lúc 20:54

mình chịu

Ngọc
31 tháng 3 2023 lúc 21:19

không biết làm

NgDQ
4 tháng 7 2023 lúc 8:48

vc

Vô Danh Tiểu Tốt
Xem chi tiết
Nyatmax
8 tháng 9 2019 lúc 17:20

Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)

\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)

\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)

\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)

\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)

\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)

\(=-33+4\left(1+1+1\right)^2=-33+36=3\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(P_{min}=3\)khi \(x=y=z=1\)

Nguyễn Phan Văn Trường
Xem chi tiết
Trần Minh Hoàng
17 tháng 12 2020 lúc 21:58

Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)

\(\Rightarrow x^4\le15x-14\).

Tương tự: \(y^4\le15y-14;z^4\le15z-14\).

Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:

\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).

Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.

Vậy...

Nguyễn Việt Lâm
17 tháng 12 2020 lúc 22:23

Nếu cảm thấy khó khăn khi tìm đánh giá kia thì bạn có thể làm từ từ từng bước như sau, đầu tiên so sánh \(x^2\) và \(x\) bằng 1 đánh giá cơ bản:

\(\left(x-1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le3x-2\)

Tiếp theo ta so sánh \(x^4\) với \(x^2\) bằng 1 đánh giá tương tự:

\(\left(x^2-1\right)\left(x^2-4\right)\le0\Leftrightarrow x^4\le5x^2-4\)

\(\Rightarrow x^4\le5\left(3x-2\right)-4\Leftrightarrow x^4\le15x-14\)

hoàng thành
Xem chi tiết
hoàng thành
6 tháng 7 2023 lúc 15:15

phân tích đa thức thành nhân tử

 

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 7 2023 lúc 14:24

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

Đỗ Thị Quỳnh Như
Xem chi tiết
Thắng Nguyễn
29 tháng 6 2017 lúc 21:41

Áp dụng BĐT Cauhy-Schwarz ta có:

\(A=x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{\frac{1}{9}}{3}=\frac{1}{27}\)

Xảy ra khi x=y=z=1/3

Nguyễn Việt Bách
Xem chi tiết
Coin Hunter
24 tháng 10 2023 lúc 15:57

 

Với điều kiện x + y + z = 0, ta có thể giả sử x = a, y = -a và z = 0, với -1 ≤ a ≤ 1.

Thay các giá trị vào đa thức, ta có:

x^2 + y^4 + z^4 = a^2 + (-a)^4 + 0^4 = a^2 + a^4.

Để tìm giá trị nhỏ nhất của đa thức này, ta xét đạo hàm của nó theo a:

f'(a) = 2a + 4a^3

Để tìm điểm cực tiểu, ta giải phương trình f'(a) = 0:

2a + 4a^3 = 0 a(1 + 2a^2) = 0

Vì -1 ≤ a ≤ 1, nên ta có hai giá trị a = 0 và a = ±1/√2.

Ta tính giá trị của đa thức tại các điểm cực tiểu:

f(0) = 0^2 + 0^4 = 0

f(1/√2) = (1/√2)^2 + (1/√2)^4 ≈ 0.8536

f(-1/√2) = (-1/√2)^2 + (-1/√2)^4 ≈ 0.8536

Như vậy, giá trị nhỏ nhất của đa thức là khoảng 0.8536, lớn hơn 2. Do đó, ta có thể kết luận rằng đa thức x^2 + y^4 + z^4 có giá trị k lớn hơn 2.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2018 lúc 3:26

đậu xanh vlog
Xem chi tiết
Nguyễn Việt Hoàng
2 tháng 11 2019 lúc 13:21

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(A=x^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left[\left(y-z\right)+\left(z-x\right)\right]\)

\(A=x^4\left(y-z\right)-z^4\left(y-z\right)+y^4\left(z-x\right)-z^4\left(z-x\right)\)

\(A=\left(y-z\right)\left(x^4-z^4\right)+\left(z-x\right)\left(y^4-z^4\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x+z\right)\left(x^2+z^2\right)-\left(x-z\right)\left(y-z\right)\left(y+z\right)\left(y^2+z^2\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x^3+xz^2+x^2z+z^3-y^3-yz^2-y^2z-z^3\right)\)

\(A=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+z^2+zx+yz\right)\)

\(A=\frac{1}{2}\left(x-y\right)\left(y-z\right)\left(x-z\right)\left[\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\right]\)

Vì \(x>y>z\Rightarrow A>0\)

Khách vãng lai đã xóa
Nguyễn Thị Thu Trang
Xem chi tiết
Nguyễn Tường An
7 tháng 7 2021 lúc 20:12

Có x+y+z=0

<=>(x+y+z)+(x+y+z)=0

<=>x+y+z+x+y+z=0

<=>2x+2y+2z=0

<=>(2x+2y+2z).2=0(1)

Tương tự có :(4x+4y+4z).2=0(2)

Từ (1)và(2) có (x2+y2+z2).2=2.(x4+y4+z4)

Chúc bạn học tốt nha

Khách vãng lai đã xóa