Cho tam giác ABC vuông cân tại A.Lấy M thuộc AC.I và K lần lượt là trung điểm của BN;AC.Qua A vẽ đg vuông góc vs IK.Qua C vẽ đg vuông góc vs AC,2 đg này cắt nhau tại H.C/m tam giác MCH vuông cân.
HELP ME.......
Cho tam giác ABC cân tại A (A <90°). Gọi M. N lần lượt là trung điểm của AB và AC. a) Tinh MN biết BC =7cm. b) Chứng minh rằng tử giác MNCB là hình thang cân. c) Kẻ MI vuông góc với BN tại I, (I thuộc BN) và CK vuông góc với BN tại K (K thuộc BN). Chứng minh rằng : CK=2MI. d) Kẻ BD vuông góc với MC tại D (D thuộc MC). Chứng minh rằng DK // BC,(mik cần gấp phần c và d ạ)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)
Cho tam giác ABC cân tại A (A <90°). Gọi M. N lần lượt là trung điểm của AB và AC. a) Tinh MN biết BC =7cm. b) Chứng minh rằng tử giác MNCB là hình thang cân. c) Kẻ MI vuông góc với BN tại I, (I thuộc BN) và CK vuông góc với BN tại K (K thuộc BN). Chứng minh rằng : CK=2MI. d) Kẻ BD vuông góc với MC tại D (D thuộc MC). Chứng minh rằng DK // BC,
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(NM=\dfrac{BC}{2}=\dfrac{7}{2}=3.5\left(cm\right)\)
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
Cho tam giác ABC cân tại A (A <90°). Gọi M. N lần lượt là trung điểm của AB và AC.
a) Tính MN biết BC =7cm.
b) Chứng minh rằng tử giác MNCB là hình thang cân.
c) Kẻ MI vuông góc với BN tại I, (I thuộc BN) và CK vuông góc với BN tại K (K thuộc BN). Chứng minh rằng : CK=2MI.
d) Kẻ BD vuông góc với MC tại D (D thuộc MC). CMR: DK // BC
Cho tam giác ABC cân tại A.Lấy M thuộc vào BC.Qua M kẻ đường thẳng vuông góc BC cắt AB,AC lần lượt tạiE,F.Vẽ các hình chữ nhật BMEG, MCHF.Gọi I,K lần lượt là tâm của 2 hình chữ nhật trên.CMR:
a.AIMK là hbh
b.A là trung điểm của GH
cho tam giác ABC vuông tại A.Lấy diểm M thuộc cạnh BC sao cho AM=1/2BC.N là trung điểm cạnh AB. Chứng minhTam giác AMB cânTứ giác MNAC là hinh thang vuông
Bài 2 : cho tam giác ABC vuông tại A. Kẻ đường cao AH. từ H kẻ HD vuông góc AC,HE cân tại AB. Gọi M,N lần lượt là trung điểm của các đoạn thẳng HB,HC. Chứng minh tứ giác DEMN là hình thang vuông
1.Giải:
a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của cạnh BC
=> AM = BM = \(\frac{1}{2}\)BC
Vì AM = BM => Tam giác ABM cân tại M
b. Vì N là trung điểm của AB
=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM
Mà tam giác ABM cân tại M ( câu a )
=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM
=> \(MN\perp AB\)
Do đó: MN//AC (cùng vuông góc với AB)
=> MNAC là hình thang
Mặt khác: \(\widehat{NAC}\)= \(^{90^0}\)(gt)
=> Tứ giá MNAC là hình thang vuông.
Cho tam giác abc vuông cân tại a. Gọi H là trung điểm của BC. M là điểm thuộc BH. Gọi I,K lần lượt là hình chiếu của B,C trên AM.
a, tam giác abh và ach là tam giác gì?vì sao?
b, CM: BI=AK
c, CM: tam giác IHK vuông cân?
Cho tam giác abc kẻ BH vuông góc với AC( H thuộc AC) ; CK vuông góc AB( K thuộc AB) . biết bh = ck . Chứng minh tam giác ABC cân
Cho tam giác ABC, gọi M, N lần lượt là trung điểm của các cạnh AB, AC. biết CM = BN. chứng minh tam giác ABC cân
Cho tam giác ABC cân tại A từ một điểm D thuộc BC vẽ đường thẳng vuông góc với BC tại D cắt AC, AB lần lượt tại M,N.Gọi H và K lần lượt là trung điểm của BC và MN Chứng minh rằng AKDH là hình chữ nhật
ΔABC cân tại A có AH là đường trung tuyến
nên AH vuông góc BC
=>AH//MD
AH//MD
=>góc AMN=góc CAH và góc ANM=góc BAH
ΔABC cân tại A có AH là đường cao
nên AH là phân giác của góc BAC
=>góc BAH=góc CAH
=>góc AMN=góc ANM
=>ΔAMN cân tại A
mà AK là trung tuyến
nên AK vuông góc MD
Xét tứ giác AKDH có
góc AKD=góc AHD=góc KDH=90 độ
=>AKDH là hình chữ nhật
Cho tam giác ABC vuông cân tại C, M thuộc AB, I, K lần lượt là hình chiếu của M trên AC và BC a, Chứng minh IKCM là hình chữ nhật b, O là trung điểm của AB, tam giác OIK có dạng gì
a: Xét tứ giác IMKC có
\(\widehat{MKC}=\widehat{MIC}=\widehat{C}=90^0\)
Do đó: IMKC là hình chữ nhật