\(\dfrac{-1}{3}^4\)
Tính:
a/\(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{3+\dfrac{3}{2}+\dfrac{3}{3}+\dfrac{3}{4}}{2-\dfrac{2}{2}+\dfrac{2}{3}-\dfrac{2}{4}}\)
b/\(\dfrac{1+\dfrac{1}{4}+\dfrac{1}{1+\dfrac{1}{4}}}{1-\dfrac{1}{4}-\dfrac{1}{1-\dfrac{1}{4}}}\)
c/\(\dfrac{\dfrac{2}{5}-\dfrac{7}{5}}{\dfrac{2}{5}-\dfrac{\dfrac{3}{4}}{\dfrac{3}{4}.\dfrac{3}{7}-1}}-\dfrac{1}{\dfrac{3}{7}\left(\dfrac{3}{4}.\dfrac{3}{7}.\dfrac{2}{5}-\dfrac{2}{5}-\dfrac{3}{4}\right)}\)
d/\(\left(\dfrac{\dfrac{4}{3}}{2+\dfrac{4}{3}}+\dfrac{2-\dfrac{4}{3}}{\dfrac{4}{3}}\right).\left(\dfrac{\dfrac{2}{3}}{4+\dfrac{2}{3}}-\dfrac{4-\dfrac{2}{3}}{\dfrac{2}{3}}\right)\)
Giúp mik với các bạn ơi 1 bài thôi cug đc.
a
= { 1*( 1+1/2+1/3+1/4) } / { 1 * ( 1-1/2 +1/3-1/4)} : { 3*(1+1/2+1/3+1/4)} / { 2*( 1-1/2 +1/3-1/4)}
Sau đó bn tự tính ra nhé cứ tính nhu bình thường sẽ ra.
Mà mình thấy máy câu này yêu cầu tính chứ có bảo tính theo cách hợp lí đâu? Vì thế bn cứ lấy máy tính tính như bình thường là được .
\(3\dfrac{3}{3}.\dfrac{1}{3}-\dfrac{3}{4}.\dfrac{1}{3}\)
\(\left[\dfrac{11}{3}\right]-\left(\dfrac{-1}{2}\right)^2-4\dfrac{1}{2}\)
\(\left(\dfrac{3}{2}-\dfrac{5}{4}+\dfrac{1}{3}\right):\left(\dfrac{4}{3}+2\dfrac{3}{2}-\dfrac{3}{4}\right)\)
\(5\dfrac{5}{27}+\dfrac{7}{23}+0,5+\dfrac{-5}{27}+\dfrac{16}{23}\)
\(2\dfrac{5}{4}+\left(-2018\right)^0-\left[\dfrac{-1}{4}\right]\)
\(\dfrac{19}{11}.\dfrac{6}{5}+\dfrac{6^2}{11}.\dfrac{6}{5}-\left(\dfrac{1}{2}\right)^0\)
1, \(\dfrac{3}{4}\). ( \(\dfrac{2}{5}\) - \(\dfrac{1}{15}\)) +\(\dfrac{3}{4}\)
2, \(\dfrac{4}{9}\). (\(\dfrac{-13}{3}\)) + \(\dfrac{4}{3}\). \(\dfrac{40}{9}\)
3, \(\dfrac{4}{9}\) - \(\dfrac{2}{3}\). ( \(\dfrac{4}{5}\)+\(\dfrac{1}{2}\) )
giúp mình nha cảm ơn
1, \(\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\left(\dfrac{2}{5}-\dfrac{1}{15}+1\right)\)
\(=\dfrac{3}{4}.\dfrac{6-1+15}{15}=\dfrac{3}{4}.\dfrac{20}{15}=\dfrac{3}{4}.\dfrac{4}{3}=1\)
2, \(\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{3}.\dfrac{40}{9}=\dfrac{4}{9}.\left(-\dfrac{13}{3}\right)+\dfrac{4}{9}.\dfrac{40}{3}\)
\(=\dfrac{4}{9}.\left[\left(-\dfrac{13}{3}\right)+\dfrac{40}{3}\right]=\dfrac{4}{9}.9=4\)
3, \(\dfrac{4}{9}-\dfrac{2}{3}.\left(\dfrac{4}{5}+\dfrac{1}{2}\right)=\dfrac{2}{3}\left(\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{3}.\dfrac{20-24-15}{30}=\dfrac{2}{3}.\left(-\dfrac{19}{30}\right)=-\dfrac{19}{45}\)
1. \(\dfrac{3}{4}.\left(\dfrac{6}{15}-\dfrac{1}{15}\right)+\dfrac{3}{4}=\dfrac{3}{4}.\dfrac{1}{3}+\dfrac{3}{4}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
tính
\(4\dfrac{1}{5}\times2\dfrac{1}{4}=\) \(3\dfrac{3}{5}\times1\dfrac{2}{3}=\)
\(4\dfrac{1}{5}:2\dfrac{1}{4}=\) \(3\dfrac{3}{5}:1\dfrac{2}{3}=\)
`4 1/5 xx 2 1/4`
`= 21/5 xx 9/4`
`= 189/20`
__
`4 1/5 : 2 1/4`
`= 21/5 : 9/4`
`= 21/5 xx 4/9`
`=84/45`
`=28/15`
__
`3 3/5 xx 1 2/3`
`= 18/5 xx 5/3`
`= 90/15`
`=6`
__
`3 3/5 : 1 2/3`
`= 18/5 : 5/3`
`= 18/5 xx 3/5`
`=54/25`
\(4\dfrac{1}{5}\times2\dfrac{1}{4}\\ =\dfrac{21}{5}\times\dfrac{9}{4}\\ =\dfrac{21\times9}{5\times4}\\ =\dfrac{189}{20}\)
\(3\dfrac{3}{5}\times1\dfrac{2}{3}\\ =\dfrac{18}{5}\times\dfrac{5}{3}\\ =\dfrac{18\times5}{5\times3}\\ =\dfrac{90}{15}\\ =6\)
\(4\dfrac{1}{5}:2\dfrac{1}{4}\\ =\dfrac{21}{5}:\dfrac{9}{4}\\ =\dfrac{21}{5}\times\dfrac{4}{9}\\ =\dfrac{21\times4}{5\times9}\\ =\dfrac{84}{45}\\ =\dfrac{28}{15}\)
\(3\dfrac{3}{5}:1\dfrac{2}{3}\\ =\dfrac{18}{5}:\dfrac{5}{3}\\ =\dfrac{18}{5}\times\dfrac{3}{5}\\ =\dfrac{18\times3}{5\times5}\\ =\dfrac{54}{25}\)
\(\dfrac{2}{5}\) x \(\dfrac{3}{4}-\dfrac{1}{8}\) \(= \)
\(\dfrac{4}{3}+\dfrac{1}{3}-\dfrac{1}{5}=\)
\(\dfrac{9}{20}-\dfrac{3}{5}\) x \(\dfrac{1}{4}\)\(= \)
\(\dfrac{2}{8}+\dfrac{2}{3}:\dfrac{4}{5}\)\(=\)
\(\dfrac{2}{5}\times\dfrac{3}{4}-\dfrac{1}{8}=\dfrac{1}{5}\times\dfrac{3}{2}-\dfrac{1}{8}=\dfrac{3}{10}-\dfrac{1}{8}=\dfrac{24}{80}-\dfrac{10}{80}=\dfrac{14}{80}=\dfrac{7}{40}\\ \dfrac{4}{3}+\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{3}-\dfrac{1}{5}=\dfrac{25}{15}-\dfrac{3}{15}=\dfrac{22}{15}\\ \dfrac{9}{20}-\dfrac{3}{5}\times\dfrac{1}{4}=\dfrac{9}{20}-\dfrac{3}{20}=\dfrac{6}{20}=\dfrac{3}{10}\\ \dfrac{2}{8}+\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{2}{8}+\dfrac{2}{3}\times\dfrac{5}{4}=\dfrac{2}{8}+\dfrac{1}{3}\times\dfrac{5}{2}=\dfrac{2}{8}+\dfrac{5}{6}=\dfrac{1}{4}+\dfrac{5}{6}=\dfrac{6}{24}+\dfrac{20}{24}=\dfrac{26}{24}=\dfrac{13}{12}\)
Tìm số nguyên x, biết:
a) \(-4\dfrac{3}{5}\). \(2\dfrac{4}{3}\) < x < \(-2\dfrac{3}{5}\) : \(1\dfrac{6}{15}\)
b) \(-4\dfrac{1}{3}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)) < x < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)
Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)
Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)
Suy ra \(-15\le x\le-2\), x ϵ Z
b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)
Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)
Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)
Suy ra \(-1\le x\le0\), x ϵ Z
b, -4\(\dfrac{1}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) < \(x\) < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
- \(\dfrac{13}{3}\).\(\dfrac{1}{3}\) < \(x\) < - \(\dfrac{2}{3}\).(-\(\dfrac{11}{12}\))
- \(\dfrac{13}{9}\) < \(x\) < \(\dfrac{11}{18}\)
\(x\) \(\in\) { -1; 0; 1}
a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)
- \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) < \(x\) < - \(\dfrac{13}{5}\): \(\dfrac{21}{15}\)
- \(\dfrac{46}{3}\) < \(x\) < - \(\dfrac{13}{7}\)
\(x\) \(\in\) {-15; -14;-13;..; -2}
b) B=\(\dfrac{\dfrac{1}{22}+\dfrac{1}{13}-0,5}{\dfrac{3}{13}-\dfrac{3}{2}+\dfrac{3}{22}}.\dfrac{\dfrac{3}{4}-0,375+\dfrac{3}{16}-\dfrac{3}{32}}{1-\dfrac{1}{2}+\dfrac{1}{4}-0,875}+\dfrac{3}{4}\)
Ta có: \(B=\dfrac{\dfrac{1}{22}-\dfrac{1}{2}+\dfrac{1}{13}}{\dfrac{3}{22}-\dfrac{3}{2}+\dfrac{3}{13}}\cdot\dfrac{\dfrac{3}{4}-0.375+\dfrac{3}{16}-\dfrac{3}{32}}{1-\dfrac{1}{2}+\dfrac{1}{4}-0.875}+\dfrac{3}{4}\)
\(=\dfrac{1}{3}\cdot\dfrac{-15}{4}+\dfrac{3}{4}\)
\(=\dfrac{-5}{4}+\dfrac{3}{4}=\dfrac{-1}{2}\)
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
1/ \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
2/ \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
3/ \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
4/ \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
5/ \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
1: Ta có: \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow5x+1-2\left(x-2\right)=4\)
\(\Leftrightarrow5x+1-2x+4=4\)
\(\Leftrightarrow3x=-1\)
hay \(x=-\dfrac{1}{3}\)
2: Ta có: \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
\(\Leftrightarrow9x+27+12-36x=-2x+2\)
\(\Leftrightarrow-27x+2x=2-39\)
hay \(x=\dfrac{37}{25}\)
3: Ta có: \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x+6-10x=4-4x\)
\(\Leftrightarrow-7x+4x=4-6=-2\)
hay \(x=\dfrac{2}{3}\)
4: Ta có: \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
\(\Leftrightarrow5x-15-x-1=2x-4\)
\(\Leftrightarrow4x-2x=-4+16=12\)
hay x=6
5: Ta có: \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
\(\Leftrightarrow12x+3-9x+5+4x-8=0\)
\(\Leftrightarrow7x=0\)
hay x=0
Tính tổng đại số
\(A=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{2}{5}-\dfrac{3}{5}-\dfrac{4}{5}+...+\dfrac{1}{10}+\dfrac{2}{10}+...+\dfrac{9}{10}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}+...+\dfrac{1}{n}+\dfrac{2}{n}+...+\dfrac{n-1}{n}\)\(\left(n\in Z,n\ge2\right)\)