cho hai so x,y > 0(xy>=1) . tim gtnn cua Q=(x-1/x^2)(y-1y^2) + xy
CHo 2 so duong xy co X+Y=1
Tim gtnn cua bieu thuc P=1/x^2+y^2 + 2/xy+4XY
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
cho x,y>0.tim gtnn cua D=x/y +y/x +xy/(x^2+xy+y^2)
Lời giải:
\(D=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2}{xy}+\frac{xy}{x^2+xy+y^2}-1\)
\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}+\frac{8(x^2+xy+y^2)}{9xy}-1\)
Áp dụng BĐT Cô-si:
\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{x^2+xy+y^2}{9xy}.\frac{xy}{x^2+xy+y^2}}=\frac{2}{3}\)
\(x^2+y^2\geq 2xy\Rightarrow \frac{8(x^2+xy+y^2)}{9xy}\geq \frac{8.3xy}{9xy}=\frac{8}{3}\)
\(\Rightarrow D\geq \frac{2}{3}+\frac{8}{3}-1=\frac{7}{3}=D_{\min}\)
Dấu "=" xảy ra khi $x=y$
cho x,y>0 va \(x+y\le1.\)
tim GTNN cua bieu thuc \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)
Dấu "=" xảy ra <=> x = y = 0,5
tim GTNN cua A=\(\frac{1}{x^2+y^2}\)\(+\)\(\frac{1}{xy}\) biet x;y>0 va x+y=1
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Rightarrow x=y=\frac{1}{2}\)
cho x,y thuoc R khac 0 thoa man 2x^2 + y^2/4 +1/x^2 = 4. tim gtnn gtln cua A= 2008+xy
cho x,y,z>0 tm xy+xz+yz=1. tim gtnn cua
S=\(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\)
Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)
Ta chứng minh \(S=1\) là GTNN của \(S\)
Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)
\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)
\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*
BĐT cuối đúng hay ta có ĐCPM
bạn có thể trình bày theo bdt cô si hay bunhia được không
Ta có:
Tương tự ta có: \(\frac{1}{4y^2-zx+2}\ge zx;\frac{1}{4z^2-xy+2}\ge xy\)
Cộng từng vế của 3 bất đẳng thức trên. ta được:
\(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-zx+2}+\frac{1}{4z^2-xy+2}\ge xy+yz+zx=1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{\sqrt{3}}{3}\)
cho x,y,z>0 va thoa man x+y+z=1. Tim GTNN cua F= 14(x2 +y2 +z2 ) +\(\frac{xy+yz+zx}{x^2y+y^2z+z^2x}\)
cho x,y,z>0 vã+y+x=1. ttim GTNN cua A= \(\frac{\sqrt{xy+z}+\sqrt{2x^2}+2y^2}{1+\sqrt{xy}}\)