Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NoobKhanh190
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
10 tháng 4 2023 lúc 21:44

`a,`

`f(x)=x^2+4x+10`

\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)

`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)

`->` Đa thức không có nghiệm (vô nghiệm).

`c,`

`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.

Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)

    \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`b,`

`g(x)=x^2-2x+2017`

Vì \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

`d,`

`g(x)=4x^2004+x^2018+1`

Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)

    \(x^{2018}\ge0\text{ }\forall\text{ }x\)

`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)

`->` Đa thức vô nghiệm.

NGUYỄN THỊ THU HOÀI
Xem chi tiết
Nguyễn Linh Chi
26 tháng 3 2020 lúc 21:03

G/s f ( x) = 0 có nghiệm nguyên là a 

Khi đó: \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)

Ta có: f ( 2017 ) . f(2018) = 2019

<=> ( 2017 - a ) . g(2017).  ( 2018 - x ) . g ( 2018) = 2019

<=>  ( 2017 - a ) .  ( 2018 - a ) . g ( 2018) .  g(2017).= 2019

Nhận xét thấy một điều rằng ( 2017 - a ) và (2018 - a ) là hai số nguyên liền nhau

=> ( 2017 - a ) . ( 2018 - a) \(⋮\)2  => VT  \(⋮\)2 => 2019 \(⋮\)2 điều này vô lí

Vậy không tồn tại; hay f(x) = 0 không có nghiệm nguyên.

Khách vãng lai đã xóa
neko mako
Xem chi tiết
TV Cuber
17 tháng 4 2022 lúc 20:44

ta có:\(x\ge0\Rightarrow2x^2\ge0\)

\(\Rightarrow2x^2+2x\ge0\)

mà 10 > 0

\(=>2x^2+2x+10>0\)

hayf(x) ko có nghiệm

Trang Huyền
Xem chi tiết
Edogawa Conan
1 tháng 8 2021 lúc 16:00

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

Trần Phương Linh
1 tháng 8 2021 lúc 16:01

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

Nguyễn Quỳnh	Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
10 tháng 5 2022 lúc 7:45

\(f\left(x\right)=x^2+1\ge1\)

=> Đa thức không có nghiệm

Hoàng Lê Huy
Xem chi tiết
Akai Haruma
30 tháng 4 2022 lúc 23:32

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

Akai Haruma
30 tháng 4 2022 lúc 23:34

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

Akai Haruma
30 tháng 4 2022 lúc 23:37

Bài 3:

$f(0)=a.0^3+b.0^2+c.0+d=d=5$

$f(1)=a+b+c+d=4$

$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$

$8a+4b+2c=31-d=26$

$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$

Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$

Vậy.......

Thanh Đạt Phạm
Xem chi tiết
HT2k02
10 tháng 4 2021 lúc 21:48

Giả sử x=a là nghiệm nguyên f(a)

\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)

Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)

Mà \(-4a^4+4a^3-2a^2⋮2\)

\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)

\(\Rightarrow1⋮2\left(VL\right)\)

Vậy không tồn tại nghiệm nguyên của f(x)

Nguyễn Lê Hoài Thương
Xem chi tiết
Aaron Lycan
8 tháng 5 2021 lúc 15:56

Ta có:

x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)

         =\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

          =\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

          =\(\dfrac{3}{4}\)

Vậy f(x)≥\(\dfrac{3}{4}\)∀ x

=>f(x) vô nghiệm

 

 

ʟɪʟɪ
8 tháng 5 2021 lúc 16:01

\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Rightarrow\)Đa thức vô nghiệm

 

Nguyễn Đình Nhật Long
8 tháng 5 2021 lúc 16:05

\(x^2-x+1\)

\(x^2-0,5\cdot x-0,5\cdot x+1\)

\(x\left(x-0,5\right)-0,5\left(x-0,5\right)+0,75\)

=\(\left(x-0,5\right)^2+0,75\)

vì (x-0,5)^2 \(\ge\) 0 với mọi x

=> \(\left(x-0,5\right)^2+0,75>0\)

=> f vô nghiệm

nguyen thi tinh
Xem chi tiết
Hoàng Phúc
27 tháng 4 2016 lúc 19:36

\(F\left(x\right)=x^2-2x+2016\)

\(F\left(x\right)=x^2-2x+1+2015\)

\(F\left(x\right)=x^2-x-x+1+2015=x\left(x-1\right)-\left(x-1\right)+2015=\left(x-1\right)^2+2015\)

\(\left(x-1\right)^2+2015\ge2015>0\) với mọi x E R

=>F(x) vô nghiệm  (đpcm)

yến
27 tháng 4 2016 lúc 20:17

xét đa thức F (x) = x2 - 2x +2016 có :

x>= 0 với mọi x 

2x >= 0 với mọi x 

2016 > 0 với mọi x  

suy ra : x-2x  +2016 > 0 vói mọi x 

hay đa thức F(x) = x-2x +2016 ko có nghiệm