Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chan Chan
Xem chi tiết
nguyễn ngọc dũng
Xem chi tiết
Trần Nguyễn Bảo Trân
Xem chi tiết
Trần Nguyễn Bảo Trân
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 4 2016 lúc 10:28

a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)

\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)

Mà x+y-2=0 => x+y-1=1 => C=1

b/  Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0

Trần Bảo Ngọc
Xem chi tiết
HaNa
30 tháng 5 2023 lúc 20:07

loading...

loading...

Trần Bảo Ngọc
30 tháng 5 2023 lúc 18:19

loading...  

Nguyễn Hải Văn
Xem chi tiết
Nguyễn Hưng Phát
5 tháng 7 2018 lúc 21:45

\(x^2+y^2-2x-2y+3\)

\(=x^2-2.x.1+1^2+y^2-2.y.1+1^2+1\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+1>0+0+0=0\)

phan anh thư
Xem chi tiết
Xyz OLM
9 tháng 7 2023 lúc 9:29

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)

Hoàng Linh Đan
Xem chi tiết
Phạm Khánh Lâm
Xem chi tiết