Tim GTLN
A= \(\dfrac{14}{x^2+2x+3}\)
Tim gtnn
\(A=\dfrac{3x^2+14}{x^2+4}\)
\(B=\dfrac{2x+1}{x^2+2}\)
Tim gtln cua tong x+y+z
y+5y=21 ; 2x+3z=51 ( x,y,z\(\ge\)0)
\(\dfrac{1}{2x-x^2-4}\) tìm GTLN/ GTNN
\(\dfrac{3x^2+14}{x^2+4}\)
\(\dfrac{2x+1}{x^2+2}\)
tim gtln \(\dfrac{2\sqrt{x}}{2x+1}\)
\(\dfrac{2\sqrt{x}}{2x+1}\le\dfrac{2\sqrt{x}}{2\sqrt{2x.1}}=\dfrac{\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
tim gia tri cua x de bieu thuc
A=\(\dfrac{-4}{x^2-4x+10}\) co GTNN
B= -2 + 4x +1 co GTLN
C= \(\dfrac{2}{x^2+4x+5}\) co GTLN
D= \(\dfrac{5}{x^2-6x+12}\) co GTLN
E=\(\dfrac{x^2-2x+2018}{x^2}\) co GTNN
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
a) Tìm GTNN của phân thức: \(\dfrac{3+2x-1}{14}\)
b Tìm GTLN của phân thức: \(1)\dfrac{-4x^2+4x}{15}\) \(2)\dfrac{5}{x^2+2x+2}\)
bài b câu 1 vì |2x-1|≥0 |2x-1|≥0 với mọi x do đó GTNN của 3+ |2x-1|/14 là 3/14 khi x=0,5
còn đây là bài b cau 1 vì -4x^2+4x/15=-(4x^2-4x+1)+1/15=-(2x-1)^2+1/15 mà -(2x+1)^2≤≤0 nên GTLN -4x^2+4x/15 là 1/15 khi x=-0,5
Tìm GTNN của phân thức: \(\dfrac{3+\left|2x-1\right|}{14}\)
Tìm GTLN của phân thức: \(\dfrac{-4x^2+4x}{15}\)
\(\left|2x-1\right|+3\ge3\Leftrightarrow\dfrac{3+\left|2x-1\right|}{14}\ge\dfrac{3}{14}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{-4x^2+4x}{15}=\dfrac{-4x^2+4x-1+1}{15}=\dfrac{-\left(2x-1\right)^2+1}{15}\)
Ta có \(-\left(2x-1\right)^2+1\le1\Leftrightarrow\dfrac{-\left(2x-1\right)^2+1}{15}\le\dfrac{1}{15}\)
Dấu \("="\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
tim GTLN cua bieu thuc B=14+2x-2x2
Cho x\(\ge-\dfrac{1}{2}\). Tìm GTLN của A=\(\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
Áp dụng BĐT cosi:
\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)
Tim GTNN va GTLN
b) \(B=\dfrac{2x+4}{x^2+2}\)
c) \(C=\dfrac{4x^2-4x-17}{\left(x-2\right)^2}\)
\(B=\dfrac{2x+4}{x^2+2}\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\dfrac{2x+4}{x^2+2}\le\dfrac{2x+4}{2}\)
Dấu "=" xảy ra khi:
\(x^2=0\Rightarrow x=0\)
\(\Rightarrow MAX_B=\dfrac{2.0+4}{0^2+2}=\dfrac{4}{2}=2\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\)
\(\left(x-2\right)^2\ne0\)
\(\left(x-2\right)^2\ge0\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\le\dfrac{4x^2-4x-7}{1}\)
\(MAX_C=\dfrac{4.3^2-4.3-7}{\left(3-2\right)^2}=\dfrac{17}{1}=17\)