Tính giá trị biểu thức: \(\dfrac{\sqrt{2}+\sqrt{5-\sqrt{14}}}{\sqrt{12}}\)
tính giá trị biểu thức
a)\(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
b)\(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
c)\(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)
\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)
\(=\sqrt{2}+1-\sqrt{2}+2\)
\(=3\)
b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)
\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-8\sqrt{6}+2\sqrt{6}\)
\(=-6\sqrt{6}\)
c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)
\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
\(=\left(\sqrt{5}\right)^2-3^2\)
\(=-4\)
a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)
\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)
\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)
\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)
\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)
\(=3\)
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
Cho biểu thức \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{8\sqrt{x}}{1-x}\), \(N=\dfrac{\sqrt{x}-x-3}{x-1}-\dfrac{1}{\sqrt{x}-1}\)
a, Rút gọn M và N
b, Xét biểu thức K = M:N. Tính giá trị của K khi \(x=14-6\sqrt{5}\)
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
giúp mik nhanh vớiiiiii :(
cho biểu thức P.
P=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}\) -\(\dfrac{10\sqrt{x}}{x-25}\)-\(\dfrac{5}{\sqrt{x}+5}\)
(x≥, x≠5)
a) rút gọn biểu thức P
b) tính giá trị P khi x=9
c) tính giá trị của x để biểu thức P=\(\dfrac{1}{2}\)
a: \(P=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: Khi x=9 thì \(P=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=\dfrac{-1}{4}\)
c: Để P=1/2 thì căn x-5/căn x+5=1/2
=>2 căn x-10=căn x+5
=>căn x=15
=>x=225
Tính giá trị biểu thức:
\(M=\sqrt{\left(1-\sqrt{3}\right)^2}-3\sqrt{12}+\dfrac{\sqrt{33}}{\sqrt{11}}+1\)
\(=\sqrt{3}-1-6\sqrt{3}+\sqrt{3}+1=-4\sqrt{3}\)
Tính giá trị của biểu thức: \(A=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
tính giá trị biểu thức
\(\left(3-\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\)\(\left(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}}-3\right)\)
Lời giải:
Gọi biểu thức là A
\(A=\left[3-\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}\right]\left[\frac{\sqrt{5}(\sqrt{2}+\sqrt{3})}{\sqrt{2}+\sqrt{3}}-3\right]\)
\(=[3-\frac{-\sqrt{5}(1-\sqrt{5})}{1-\sqrt{5}}](\sqrt{5}-3)=(3--\sqrt{5})(\sqrt{5}-3)=(3+\sqrt{5})(\sqrt{5}-3)=5-3^2=-4\)
Ta có: \(\left(3-\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}}-3\right)\)
\(=\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)\)
=5-9
=-4
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)