tìm nghiệm của đa thức
x3 -x
Cho hai đa thức f(x)= x5 + x3 -4x- x5 +3x +7 và g(x)= 3x2-x3+8x-3x2-14. Tính f(x)+g(x) và tìm nghiệm của đa thức f(x)+g(x).
\(f\left(x\right)=x^3-x+7\)
\(g\left(x\right)=-x^3+8x-14\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)
Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)
\(\Rightarrow x=1\)
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
chứng tỏ đa thức sau không có nghiệm: A(x)= x2-4x+7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Tìm nghiệm của đa thức sau:
b) B(x) = -18 + 2x2
c) C(x) = x3 + 4x2 - x -4
b.
\(B\left(x\right)=0\Rightarrow-18+2x^2=0\)
\(\Leftrightarrow2\left(x^2-9\right)=0\)
\(\Leftrightarrow2\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c.
\(C\left(x\right)=0\Leftrightarrow x^3+4x^2-x-4=0\)
\(\Leftrightarrow x^2\left(x+4\right)-\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\\x=-1\end{matrix}\right.\)
tìm nghiệm đa thức: -x3+x
cho các đa thức sau : P(x)=x3+3x2+3x-2 và Q(x)=-x3-x2-5x+2
a) Tính P(x)+Q(x)
b tính P(x)-Q(x)
c tìm nghiệm của đa thức H(x) biết H(x) = P(x)+Q(x)
a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2
=\(2x^2-2x\)
b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)
=x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2
=\(2x^3+4x^2+8x-4\)
c) Ta có H(x)=0
\(\Rightarrow\)\(2x^2-2x\)=0
\(\Rightarrow\)2x(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức H(x) là 0;1
f(x)=x3−3x2+2x−5+x2,g(x)=−x3−5x+3x2+3x+4.a.thu gọn các đa thức ên và sắp xếp theo lũy thừa giảm dần của biến.b) tính h(x)+g(x)và q(x)-2.g(x) c) tìm nghiệm của đa thức h(x)
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
). Cho P (x) + (3x2 – 2x) = x3 + 3x2 – 2x + 2019
a)Tính P(x)
b) Cho Q(x) = -x3 + x – 22. Tính Q(2)
c) Tìm nghiệm của đa thức P(x) + Q(x)
Lời giải:
a. $P(x)=x^3+3x^2-2x+2019-(3x^2-2x)=x^3+2019$
b.
$Q(2)=-2^3+2-22=-28$
c.
$P(x)+Q(x)=x^3+2019+(-x^3+x-2022)=x-3$
$P(x)+Q(x)=0$
$x-3=0$
$x=3$
Vậy nghiệm của đa thức là $x=3$
tìm nghiệm của đa thức : x3- 36x
\(x^3-36x=0\\ \Leftrightarrow x\left(x^2-36\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=6\end{matrix}\right.\)
\(x^3-36x\\ \Leftrightarrow x\left(x-6\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
Cho hai đa thức sau:f(x) = ( x-1)(x+2); g(x) = x3 + ax2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
cho : f (x) = 0
=> (x−1)(x+2)=0
=>x−1=0 và x+2=0
=>x=1vàx=-2
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
Ta có: g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
Ta có: g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do b=−3-a
=>b=3
Vậy a = 0 ; b = 3