Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tông hai cạnh đối ?
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của hai đường chéo AC và BD
* Trong ∆ OAB, ta có:
OA + OB > AB (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > CD (bất đẳng thức tam giác) (2)
Cộng từng vế (1) và (2):
OA + OB + OC + OD > AB + CD
⇒ AC + BD > AB + CD
Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn tổng hai cạnh đối.
Gọi O là giao điểm của 2 đường chéo AC và BD của hình tứ giác ABCD
Trong các tam giác AOB và COD theo bất đẳng thức tam giác ta lần lượt có :
OA + OB > AB
OC + OD > CD
Cộng theo từng vế bất đẳng thức trên ta có :
AB + BD > AB + CD ( đpcm )
1) chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn tổng hai cạnh đối
2)chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
các bạn giúp mình bài này với
chứng minh rằng trong một tứ giác
a) một đường chéo nhỏ hơn nửa chu vi của tứ giác
b) tổng hai đường chéo lớn hơn tổng hai cành đối
Giúp mình 1 bài này thôi nha :3 (ko spam, sao chép nhá) Chứng minh rằng trong một tứ giác thì: a) Tổng độ dài 2 cạnh đối diện nhỏ hơn tổng độ dài hai đường chéo. b) Tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác.
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Cho tứ giác ABCD. Chứng minh:
a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;
b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
. a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.
b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).
Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD
Chứng minh rằng trong tứ giác tổng 2 đường chéo lớn hơn tổng hai cạnh đối .
CÂU MIK MUỐN HỎI LÀ: cạnh đối là cạnh j á?
mik cảm ơn
Trong các tam giác AOB Và COD theo bất đẳng thức tam giác ta lần lượt có:
OA + OB > AB
OC + OD > CD.
Cộng theo từng vế hai bất đẳng thức là ra
P/s cái tam giác tự vẽ rồi đặt tên giống mình
Cx có thể tham khảo ở trên mạng
Chứng minh rằng trong tứ giác tổng 2 đường chéo lớn hơn tổng hai cạnh đối
Cho tứ giác có AB =BC , góc A + góc C = 180 độ . Chứng minh rằng BD là tia phân giác của Tam giác ADC
a, Gọi AC giao BD tai O
TAm giác OAB có
OA + OB > AB (1)
Tam giác OCD có
OC + OD > CD (2)
cộng vế với vế của (1) và (2) -=> AC + BD > AB + CD
Mình cũng đồng ý với ý kiến của bạn
đúng nhưng bạn thiếu rồi
còn AC+BD>AD+BC nữa