Giải phương trình sau:
|2x—5|+|1—3x|+|x|=7
Cho mình biết bài sau nha:
GIẢI PHƯƠNG TRÌNH CÁC PHƯƠNG TRÌNH SAU:
a)3x-|x-1|=5
b)|5-2x|-3x=1
c)|3y-5|=1-2y
d)|5x+2|×(x-7)=0
Giải các phương trình sau :
a) 2x + 1 = 15 - 5x
b) 3x - 2 = 2x + 5
c) x ( 2x + 1 ) ?= 0
d ) 7 ( x -2 ) = 5(3x + 1 )
a) 2x + 1 = 15 - 5x
<=> 2x + 5x = 15 - 1
<=> 7x = 14
<=> x = 2
Vậy phương trình có nghiệm duy nhất là x = 2
b) 3x - 2 = 2x + 5
<=> 3x - 2x = 5 + 2
<=> x = 7
Vậy phương trình có nghiệm duy nhất là x = 7
c) x ( 2x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy _______
d) 7 ( x - 2 ) = 5 ( 3x + 1 )
<=> 7x - 14 = 15x + 5
<=> 7x - 15x = 5 + 14
<=> -8x = 19
<=> \(x=-\frac{19}{8}\)
Vậy ______
giải các phương trình sau bằng cách đưa về dạng ax+b=0
1)2x-4-3x/5/15=7x-x-3/2-5-x+1
2)x-3/17(2x-1)=7/34(1-2x)+10x-3/2
giải phương trình(tìm x)
6x2-(2x+5)(3x+7)=7
giúp em giải vs
Giải các phương trình sau
x + 3 = 0
2x - 1 =0
3x - 5 = x + 4
x - 1 = 5x -3
|x - 3| = 2x + 3
|x - 1| = 3x + 4
a) x + 3 = 0
\(\Leftrightarrow x=-3\)
Vậy phương trình có tập nghiệm \(S=\left\{-3\right\}\)
b) 2x - 1 = 0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
c) x - 1 = 5x - 3
\(\Leftrightarrow x-5x=-3+1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
d) 3x - 5 = x + 4
\(\Leftrightarrow3x-x=4+5\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{9}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{9}{2}\right\}\)
e) \(|x-3|=2x+3\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=2x+3\\x-3=-2x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}-x=6\\3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-6;0\right\}\)
f) \(|x-1|=3x+4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3x+4\\x-1=-3x-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}-2x=5\\4x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{3}{4}\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-\frac{5}{2};-\frac{3}{4}\right\}\)
Bài 2 . Giải các phương trình sau
a) | 2x - 3 | = x - 5
b) | 2x + 5 | = | 3x - 2 |
c) | 3x - 1 | / x + 2 = | x - 3 |
d) | 4x + 1 | = x2 + 2x - 4
a) | 2x - 3 | = x - 5
Bình phương hai vế phương trình đã cho ta được phương trình hệ quả . Ta có :
| 2x - 3 | = x - 5 \(\Rightarrow\) ( 2x - 3 )2 = ( x - 5 )2
\(\Leftrightarrow\) 4x2 - 12x + 9 = x2 - 10x + 25
\(\Leftrightarrow\) 3x2 - 2x - 16 = 0
Phương trình cuối có hai nghiệm x1 = -2 ; x2 = 8/3
Vậy phương trình trên là vô nghiệm
Bài 1 : Giải phương trình bằng cách đưa về phương trình tích
a) (2x+1) (3x-2) = (5x-8) (2x+1)
b) (4x^2-1) = (2x+1) (3x-5)
c) (x+1)^2 = 4 . (x^2-2x+1)
d) 2x^3 + 5x^2 - 3x = 0
Bài 2 : Giải phương trình :
a) 1/2x-3 - 3/x.(2x-3) = 5/x
b) x+2/x-2 - 1/x = 2/x.(x-2)
c) x+1/x-2 + x-1/x+2 = 2(x^2+2)/x^2-4
Bài 3 : Giải phương trình :
x^4 + x^3 + 3x^2 + 2x + 2 = 0
Help mee
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Bài 2:
a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)
=>-9x=-12
hay x=4/3
b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)
=>x2+2x-x+2=2
=>x2+x=0
=>x=0(loại) hoặc x=-1(nhận)
c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)
=>4=4(luôn đúng)
Vậy: S={x|x<>2; x<>-2}
Giải các phương trình và bất phương trình sau
a)\(\left|x-9\right|\) \(=2x+5\)
b) \(\dfrac{1-2x}{4}\) \(-2\) ≤ \(\dfrac{1-5x}{8}\) + x
c)\(\dfrac{2}{x-3}\)\(+\dfrac{3}{x+3}\)\(=\dfrac{3x+5}{x^2-9}\)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
Ta có:
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)
\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)
\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)