Trên mặt phẳng tọa độ Oxy cho bốn điểm A, B, C, D có tọa độ nguyên như sau :
A( 4; 5) B (1; -1) C ( 4; -4) D (7; -1)
a) Viết phương trình của các đường thẳng AB, BC, CD, DA
b) Tính (theo độ, phút) các góc của tứ giác ABCD bằng máy tính bỏ túi
Trên mặt phẳng tọa độ Oxy cho bốn điểm A, B, C, D có tọa độ nguyên như sau:
A(4;5) B(1;-1) C(4;-4) D(7; -1).
Tính (theo độ, phút) các góc của tứ giác ABCD bằng máy tính bỏ túi.
Hai đường chéo AC và BD vuông góc với nhau tại I.
- Đường thẳng AB có hệ số góc bằng 2, do đó ta có
tgα = 2 ⇒ α = 63 ° 26 ' (tính trên máy tính bỏ túi).
Suy ra ∠ (ABD) ≈ 63 ° 26 '
Tam giác ABD cân, nên cũng có ∠ (ADB) ≈ 63 ° 26 '
Từ đó suy ra ∠ (BAD) = 180 ° - 2. 63 ° 26 ' ≈ 53 ° 8 '
Trên mặt phẳng tọa độ Oxy cho bốn điểm A, B, C, D có tọa độ nguyên như sau:
A(4;5) B(1;-1) C(4;-4) D(7; -1).
Viết phương trình của các đường thẳng AB, BC, CD và DA.
Phương trình của đường thẳng AB có dạng: y = ax + b.
Do phương trình đi qua A(4;5) và B(1; -1) nên ta có:
5 = a.4 + b (1)
-1 = a.1 + b (2)
Trừ từng vế của (1) và (2), ta có: 6 = 3a ⇒ a = 2.
Thay a = 2 và (1) để tìm b, ta có 5 = 2.4 + b ⇒ b = -3.
Vậy phương trình đường thẳng AB là: y = 2x – 3.
Làm tương tự như trên, ta có:
Phương trình đường thẳng BC là: y = -x.
Phương trình đường thẳng CD là: y = x – 8.
Phương trình đường thẳng DA là: y = -2x + 13.
Trên mặt phẳng tọa độ Oxy cho ba điểm A, B, C có tọa độ như sau: A(7;7), B(2;5), C(5;2). Hãy viết phương trình của các đường thẳng AB, BC và CA.
* Gọi phương trình đường thẳng AB là y = ax + b.
Tọa độ các điểm A, B phải thỏa mãn phương trình y = ax + b nên ta có:
Vậy phương trình của đường thẳng AB là y = 2/5x + 21/5.
*Gọi phương trình của đường thẳng BC là y = a’x + b’.
Tương tự như trên ta có:
Vậy phương trình của đường thẳng BC là y = -x + 7.
*Gọi phương trình của đường thẳng AC là y = a’’x + b’’.
Tương tự như trên ta có:
Vậy phương trình của đường thẳng AC là y = 5/2x - 21/2.
Trong mặt phẳng tọa độ Oxy, cho bốn điểm A( 7; -3); B( 8; 4); C ( 1; 5) và D(0; -2). Khẳng định nào sau đây đúng?
A. A C → ⊥ C B → .
B. Tam giác ABC đều.
C. Tứ giác ABCD là hình vuông.
D. Tứ giác ABCD không nội tiếp đường tròn.
Ta có
A B → = 1 ; 7 ⇒ A B = 1 2 + 7 2 = 5 2 B C → = − 7 ; 1 ⇒ B C = 5 2 C D → = − 1 ; − 7 ⇒ C D = 5 2 D A → = 7 ; − 1 ⇒ D A = 5 2 ⇒ A B = B C = C D = D A = 5 2 .
Lại có: A B → . B C → = 1 − 7 + 7.1 = 0 nên A B ⊥ B C .
Từ đó suy ra ABCD là hình vuông.
Chọn C.
Trên mặt phẳng tọa độ Oxy cho bốn điểm: A(7; -3), B(8; 4), C(1; 5), D(0; –2). Chứng minh rằng tứ giác ABCD là hình vuông.
⇒ ABCD là hình bình hành.
⇒ hình bình hành ABCD là hình chữ nhật.
⇒ AB = AD ⇒ Hình chữ nhật ABCD là hình vuông (ĐPCM).
Trên mặt phẳng tọa độ Oxy cho hàm số y = -2x + 4 có đồ thị là đường thẳng (d).
a, Tìm tọa độ giao điểm của đường thẳng (d) với hai trục tọa độ.
b, Tìm trên (d) điểm có hoành độ bằng tung độ.
a: Khi x=0 thì y=4
Khi y=0 thì -2x+4=0
hay x=2
b: Gọi điểm cần tìm là A(x;x)
Thay y=x vào y=-2x+4, ta được:
x=-2x+4
=>x=4
Vậy: Điểm cần tìm là A(4;4)
trên mặt phẳng tọa độ oxy cho A (5;-3) B(2;4) C(1;5) .tìm tọa độ điểm D sao cho ABCD là hình bình hành
\(\overrightarrow{AB}=\left(-3;7\right)\)
\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)
Để ABCD là hbh thì
\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)
Trên mặt phẳng tọa độ Oxy cho ba điểm A, B, C có tọa độ như sau: A(7;7), B(2;5), C(5;2). Coi độ dài mỗi đơn vị trên các trục Ox, Oy là 1cm, hãy tính chu vi, diện tích của tam giác ABC (lấy chính xác đến hai chữ số thập phân).
* Áp dụng định lý Py-ta-go vào tam giác vuông lần lượt có các cạnh huyền là AB, AC, BC và sử dụng máy tính bỏ túi, tính được AB ≈ 5,39cm; AC ≈ 5,39; BC ≈ 4,24cm.
Do chu vi của tam giác ABC là AB + BC + CA ≈ 15,02cm
*Diện tích tam giác ABC bằng diện tích hình vuông cạnh dài 5cm trừ đi tổng diện tích ba tam giác vuông xung quanh (có cạnh huyền lần lượt là AB, BC, CA). Tính được: S A B C = 10,5 ( c m 2 ).
Trong mặt phẳng tọa độ Oxy, cho điểm C(2; -5) và đường thẳng D:3x-4y+4=0. Trên đường thẳng D hai điểm A và B đối xứng nhau qua điểm I 2 ; 5 2 sao cho diện tích tam giác ABC bằng 15. Tìm tọa độ điểm A biết điểm B có hoành độ dương.
A. A(8; 7)
B. A(4; 4)
C. A(0; 1)
D. A(-4; -2