Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc An Hy
Xem chi tiết
doraemon
Xem chi tiết
doraemon
17 tháng 4 2022 lúc 10:17

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Đàm Nam Phong
17 tháng 4 2022 lúc 10:32

ko biết !!!

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 16:50

\(f\left(0\right)=2\Rightarrow c=2\)

\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)

\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)

\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)

\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Pham Tien Dat
Xem chi tiết
Rin Huỳnh
2 tháng 10 2021 lúc 22:25

Gửi bạnundefinedundefined

Lê Song Phương
Xem chi tiết
Quách Phương
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2021 lúc 20:12

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Phan Hằng Giang
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Akai Haruma
17 tháng 10 2018 lúc 8:42

Lời giải:

Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)

\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)

Do đó:

\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)

\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)

............

\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)

Cộng theo vế:

\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)

\(=\underbrace{1+1+1...+1}_{1008}=1008\)

tnmq
Xem chi tiết

f(x)>0 với mọi x khi và chỉ khi: \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)

Võ Thị KimThoa
Xem chi tiết
dam cong tian
17 tháng 3 2017 lúc 20:59

4036

Tống Hiếu
17 tháng 3 2017 lúc 21:06

4036

Võ Thị KimThoa
17 tháng 3 2017 lúc 21:24

dam cong tian Làm giúp đi mk bó tay cái dạng này !! -_-