tìm nghiệm của đa thức
2x4 +5x3 + 5x +11 = 0
Cho hai đa thức P(x)= x4 - 5x3-1-6x2+5x-2x4
Q(x)=3x4+6x2+ 5x3+ 3- 2x4-2x
a) thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b) tính : M(x)=P(x)+Q(x), và tìm nghiệm của đa thức M(x)
P(x) = \(-x^4-5x^3-6x^2+5x-1\)
Q(x) = \(x^4+5x^3+6x^2-2x+3\)
M(x) = P(x) + Q(x)
\(-x^4-5x^3-6x^2+5x-1\)
+
\(x^4+5x^3+6x^2-2x+3\)
------------------------------------
\(3x+2\)
Vậy : M(x) = 3x + 2
Nghiệm của M(x) : 3x + 2 = 0
3x = -2
x = \(-\dfrac{2}{3}\)
a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)
\(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)
\(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)
\(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)
b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)
Vậy \(M\left(x\right)=3x+2\)
Cho \(M\left(x\right)=0\)
hay \(3x+2=0\)
\(3x\) \(=0-2\)
\(3x\) \(=-2\)
\(x\) \(=-2:3\)
\(x\) \(=\dfrac{-2}{3}\)
Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Cho đa thức P(x) = 2x4 + x3 – 2x - 5x3 + 2x2 + x + 1
a) Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến ;
b) Tính P(0) và P(1) .
c) x = 1 và x =-1 có phải là nghiệm của đa thức P(x) hay không ? Vì sao ?
Lời giải:
a.
$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$
$=2x^4-4x^3+2x^2-x+1$
b)
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$
$P(1)=2-4+2-1+1=0$
c.
$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$
$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$
Cho đa thức
P ( x ) = 3 x 2 - 3 x - 1 + x 4 Q ( x ) = 5 x 3 + 2 x 4 - x 2 - 5 x 3 - x 4 + 1 + 3 x 2 + 5 x 2
Tìm đa thức R(x) sao cho P ( x ) + R ( x ) = Q ( x )
A. 4 x 2 + 3 x + 2
B. 4 x 2 - 3 x + 2
C. - 4 x 2 + 3 x + 2
D. 4 x 2 + 3 x - 2
Thu gọn Q(x) = x4 + 7x2 + 1
Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A
Bài 5: Cho hai đa thức:
P(x) = 2x4 + 9x2 – 3x + 7 – x – 4x2 – 2x4
Q(x) = – 5x3 – 3x – 3 + 7x – x2 – 2
a/ Thu gọn các đa thức trên và sắp xếp các hạng tử theo lũy thừa giảm dần của biến. Tìm bậc của mỗi đa thức trên.
b/ Tính giá trị của các đa thức P(x) tại x = ; Q(x) tại x = 1.
c/ Tính Q(x) + P(x) và Q(x) – P(x)
d/ Tìm giá trị của x sao cho: Q(x) + P(x) + 5x2 – 2 = 0
giúp phần b với d
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)
Cho đa thức P(x) = 5x3+ 2x4–x2–5x3–x4+ 1 +3x2+ 5x2. Hệ số cao nhất là hệ số tự do của đa thức lần lượt là
Cho 2 đa thức P(x) = 5x3 - 3x + 2 - x - x2 + 3/5x + 3 và Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2
a) Thu gọn hai đa thức P(x) và Q(x).
b) Tìm đa thức M(x) - P(x) + Q(x) và N(x) = P(x) - Q(x) b)
c) Tìm nghiệm của đa thức M (x)
a) P(x) = 5x^3 - 3x + 2 - x - x^2 + 3/5x + 3
= 5x^3 - x^2 + (-3x - x + 3/5x) + (2 + 3)
= 5x^3 - x^2 - 17/5x + 5
Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2
= -5x^3 + (2x + 2x) - x^2 + (-3 - 2)
= -5x^3 + 4x - x^2 - 5
b) M(x) = P(x) + Q(x)
= 5x^3 - x^2 - 17/5x + 5 + (-5x^3) + 4x - x^2 - 5
= (5x^3 - 5x^3) + (-x^2 - x^2) + (-17/5x + 4x) + (5 - 5)
= -2x^2 + 3/5x
N(x) = P(x) - Q(x)
= 5x^3 - x^2 - 17/5x + 5 - (-5x^3 + 4x - x^2 - 5)
= 5x^3 - x^2 - 17/5x + 5 + 5x^3 - 4x + x^2 + 5
= (5x^3 + 5x^3) + (-x^2 + x^2) + (-17/5x - 4x) + (5 + 5)
= 10x^3 - 37/5x + 10
c) M(x) = -2x^2 + 3/5x = 0
<=> -x(2x - 3/5) = 0
<=> -x = 0 hoặc 2x - 3/5 = 0
<=> x = 0 hoặc 2x = 3/5
<=> x = 0 hoặc x = 3/10
Vậy: nghiệm của M(x) là 3/10
cho 2 đa thức
P(x)=5x3+3-3x2+x4-2x-2+2x2+x
Q(x)=2x4+x2+2x+2-3x2-5x+2x3-x4
a)thu gọn và sắp xếp các hạng tử của 2 đa thức trên theo thứ tự giảm dần của biểu thức
b) tính P(x)-Q(x)
`a,`
`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`
`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`
`P(x)=x^4+5x^3-x^2-x+1`
`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`
`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`
`Q(x)=x^4+2x^3-2x^2-3x+2`
`b,`
`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`
`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`
`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`
`P(x)-Q(x)=3x^3+x^2+2x-1`
cho hai đa thức M(x)=-5x3+3x4+7-9x
N(x)=-2x4+3x-5x3-7
tính M(x)=N(x)
\(M\left(x\right)+N\left(x\right)=-5x^3+3x^4+7-9x-2x^4+3x-5x^3-7\)
\(M\left(x\right)+N\left(x\right)=x^4-10x^3-12x\)