A = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/95.97 + 2/97.99
Tính nhanh :
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{95.97}+\frac{2}{97.99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
Tự tính
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
32/99
k với nghe bạn
và chúc chueeuf nay thi tốt
Tính giá trị biêut hức;B=2/1.3-4/3.5+6/5.7-8/7.9+...-96/95.97+98/97.99
Tính tổng: M= 3/3.5 + 3/5.7 + 3/7.9 +.......+ 3/95.97 + 3/97.99
Giải:
M=\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{95.97}+\dfrac{3}{97.99}\)
M=\(\dfrac{3}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}\right)\)
M=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
M=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
M=\(\dfrac{3}{2}.\dfrac{32}{99}\)
M=\(\dfrac{16}{33}\)
Chúc bạn học tốt!
M= 3/3.5 + 3/5.7 + 3/7.9 +.......+ 3/95.97 + 3/97.99
=3.1/2 ( 2/3.5+...+2/97.99)
=3.1/2(1/3- 1/5+...+1/97+1/99)
=3.1/2(1/3- 1/99)
=(3/2).(32/99)
=96/891
n/xét
3/3.5=(3/3-3/5).1/2
3/5.7=(3/5-3/7).1/2
...
3/97.99=(3/97-3/99).1/2
vậy M=(3/3-3/5).1/2+(3/5-3/7).1/2+...+(3/97-3/99).1/2
⇒M=1/2.(3/3-3/7+3/5-3/7+...+3/97-3/99)
=1/2.(3/3-3/99)
=1/2.32/33
M =16/33
VẬY M=16/33
Tìm giá trị của biểu thức \(P=\frac{2}{1.3}-\frac{4}{3.5}+\frac{6}{5.7}+\frac{8}{7.9}+...-\frac{96}{95.97}+\frac{98}{97.99}\)
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99
1.Tính hợp lí
a/ 2/3.5 + 2/5.7 + 2/7.9 +...+2/97.99
b/ 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
c/1/18 + 1/54 + 1/108 +...+1/990
2.Chứng minh rằng: 1/14 + 1/42 + 1/43 +...+1/79 + 1/80 > 7.12
Tính nhanh
B=3^2/1.3+3^2/3.5+3^2/5.7+...+3^2/95.97+3^2/97.99
=3.(3/1.3+3/3.5+3/5.7+...+3/95.97+3/97.99)
=3(1-1/3+1/3-1/5+1/5-1/7+...+1/95-1/97+1/97-1/99)
=3[(1-1/99)+(1/5-1/5)+(1/7-1/7)+...+(1/97-1/97)]
=3(1-1/99)=3(99/99-1/99)=3.98/99=1.98/33=98/33
Neu la 3 ma ko phai la 3^2 thi sao : Tinh gium minh nha .
Tính:
a) M=2/3.5+2/5.7+2/7.9+...+2/97.99
b) N=3/5.7+3/7.9+3/9.11+...+3/197.199
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Cho A =2/1.3+2/3.5+2/5.7+2/7.9+....2/97.99
\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{1}-\frac{1}{99}\)
\(A=\frac{98}{99}\)
ta có A=1-1/3+1/2-1/5+..................1/95-1/97+1/97-1/99
A=1-1/99
A=98/99
Cho A =2/1.3+2/3.5+2/5.7+2/7.9+....2/97.99
A=1-1/3+1/3-1/5+1/5-1/7+..........+1/97-1/98
A=1-1/98
A=98/99