Cho A=\(\dfrac{10^7+1}{10^8+ 1}\)
B=\(\dfrac{10^8+1}{10^9+1}\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
Tính rồi rút gọn (theo mẫu):
Mẫu: \(\dfrac{9}{10}-\dfrac{4}{10}=\dfrac{9-4}{10}=\dfrac{5}{10}=\dfrac{1}{2}\) |
a) \(\dfrac{15}{8}-\dfrac{13}{8}\) b) \(\dfrac{7}{15}-\dfrac{2}{15}\) c) \(\dfrac{11}{12}-\dfrac{2}{12}\) d) \(\dfrac{19}{7}-\dfrac{5}{7}\)
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
tính
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
b)\(\dfrac{3}{14}:\dfrac{1}{28}-\dfrac{13}{21}:\dfrac{1}{28}+\dfrac{29}{42}:\dfrac{1}{28}-8\)
c)\(-1\dfrac{5}{7}.15+\dfrac{2}{7}\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
c; C = -1\(\dfrac{5}{7}\).15 + \(\dfrac{2}{7}\)(-15) + (-105).(\(\dfrac{2}{3}\) - \(\dfrac{4}{5}\) + \(\dfrac{1}{7}\))
C = - 15.(- 1 - \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\) + \(1\))
C = -15.[(1 - 1) - (\(\dfrac{5}{7}\) - \(\dfrac{2}{7}\)) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15.[0 - \(\dfrac{3}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15 . [- \(\dfrac{45}{105}\) + \(\dfrac{490}{105}\) - \(\dfrac{588}{105}\)]
C = -15. [ \(\dfrac{445}{105}\) - \(\dfrac{588}{105}\)]
C = - 15.(- \(\dfrac{143}{105}\))
C = \(\dfrac{143}{7}\)
So sánh A và B :
a) \(A=\dfrac{20}{39}+\dfrac{22}{27}+\dfrac{18}{43}\)
\(B=\dfrac{14}{39}+\dfrac{22}{29}+\dfrac{18}{41}\)
b) \(A=\dfrac{3}{8^3}+\dfrac{7}{8^4}\)
\(B=\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
c) \(A=\dfrac{10^7+5}{10^7-8}\)
\(B=\dfrac{10^8+6}{10^8-7}\)
d) \(A=\dfrac{10^{1992}+1}{10^{1991}+1}\)
\(B=\dfrac{10^{1993}+1}{10^{1992}+1}\)
d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B
cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A
Suy ra B>A(chuc ban hoc goi nhe)
So sánh:
a/ \(A=\dfrac{17^{18}+1}{17^{19}+1};B=\dfrac{17^{17}+1}{17^{18}+1}\)
b/ \(A=\dfrac{10^8-2}{10^8+2};B=\dfrac{10^8}{10^8+4}\)
c/ \(A=\dfrac{20^{10}+1}{20^{10}-1};B=\dfrac{20^{10}-1}{20^{10}-3}\)
GIÚP MÌNH VỚI
Giải:
a) A=1718+1/1719+1
17A=1719+17/1719+1
17A=1719+1+16/1719+1
17A=1+16/1719+1
Tương tự:
B=1717+1/1718+1
17B=1718+17/1718+1
17B=1718+1+16/1718+1
17B=1+16/1718+1
Vì 16/1719+1<16/1718+1 nên 17A<17B
⇒A<B
b) A=108-2/108+2
A=108+2-4/108+2
A=1+-4/108+2
Tương tự:
B=108/108+4
B=108+4-4/108+1
B=1+-4/108+1
Vì -4/108+2>-4/108+1 nên A>B
c)A=2010+1/2010-1
A=2010-1+2/2010-1
A=1+2/2010-1
Tương tự:
B=2010-1/2010-3
B=2010-3+2/2010-3
B=1+2/2010-3
Vì 2/2010-3>2/2010-1 nên B>A
⇒A<B
Chúc bạn học tốt!
Tính hợp lý
\(A= (\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\) B= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}{\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}})\)
Tính bằng cách thuận tiện nhất
a, \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
b, 13,25 : 0,5 + 13,25 : 0,25 + 13,25 : 0,125 + 13,25 x 6
Giúp mình với mình đang gấp
\(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
\(=\left(\dfrac{1}{10}+\dfrac{9}{10}\right)+\left(\dfrac{2}{10}+\dfrac{8}{10}\right)+\left(\dfrac{3}{10}+\dfrac{7}{10}\right)+\left(\dfrac{4}{10}+\dfrac{6}{10}\right)+\dfrac{5}{10}\)
\(=1+1+1+1+\dfrac{5}{10}\)
\(=4+\dfrac{5}{10}\)
\(=\dfrac{45}{10}\)
\(13,25:0,5+13,25:0,25+13,25:0,125+13,25\times6\)
\(=13,25:\dfrac{1}{2}+13,25:\dfrac{1}{4}+13,25:\dfrac{1}{8}+13,25\times6\)
\(=13,25\times2+13,25\times4+13,25\times8+13,25\times6\)
\(=13,25\times\left(2+4+8+6\right)\)
\(=13,25\times20\)
\(=265\)
b)\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10}\right)x=\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}\)