Cho a + b = 1 . tìm min của A = a ( a2 + 2b ) + b ( b2 - a )
3)Cho a +b = 1.Tìm GTNN của A= a(a2+ 2b )+ b(b2 -a)
Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: A = a(a2 + 2b) + b(b2– a).
\(a+b=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow\left(a^2+b^2\right)+2ab=1\)
\(\Rightarrow2ab+2ab\le1\) (do \(a^2+b^2\ge2ab\))
\(\Rightarrow ab\le\dfrac{1}{4}\)
\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
\(=a^3+2ab+b^3-ab\)
\(=a^3+b^3+ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)
\(=1^3-3ab+ab=1-2ab\ge1-2.\dfrac{1}{4}=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)
\(a+b=1\Rightarrow a=\dfrac{1}{2}+x;b=\dfrac{1}{2}+y\left(x+y=0\right)\)
có: \(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+b^3+ab=a^2+b^2\\ =\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2=\dfrac{1}{2}+x^2+y^2\ge\dfrac{1}{2}\)
\(\Rightarrow A_{min}=\dfrac{1}{2}\Leftrightarrow x=y=0\Leftrightarrow a=b=\dfrac{1}{2}\)
Cho a,b>0 và a+b=1. Tìm Min F=2/ab + 1/(a2+b2) + (a4+b4)/2
cho a,b,c không đồng thời bằng 0 thỏa mãn a2+b2+c2=2,ab+bc+ca =1.tìm min,max của a,b,c
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
Cho a,b > 0 và a + b ≤ 4. Tìm Min P = 4/ a2 + b2 + 3/ab
\(P=\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\dfrac{4}{a^2+b^2}+\dfrac{3}{ab}\right)\left[4\left(a^2+b^2\right)+12ab\right]\ge\left[\sqrt{\dfrac{4}{a^2+b^2}.4\left(a^2+b^2\right)}+\sqrt{\dfrac{3}{ab}.12ab}\right]^2=100\)
\(\Rightarrow P\ge\dfrac{100}{4\left(a^2+b^2\right)+12ab}=\dfrac{100}{4\left(a+b\right)^2+4ab}=\dfrac{25}{\left(a+b\right)^2+ab}\)
\(\Rightarrow P\ge\dfrac{25}{4^2+ab}=\dfrac{25}{16+ab}\) (vì \(a+b\le4\)).
Mặt khác ta có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{4^2}{4}=4\)
\(\Rightarrow P\ge\dfrac{25}{16+4}=\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=b=2\).
Vậy \(MinP=\dfrac{5}{4}\), đạt tại \(a=b=2\)
Câu 4: Giả sử cần tìm giá trị lớn nhất trong các ô A2, B2 và C2. Hàm nào sau đây là đúng?
A. max(A2,B2,C2) B. =max(A2,B2,C2) C. min(A2,B2,C2) D. =min(A2,B2,C2)
Cho đẳng thức a − 2 b 27 a 3 + b 3 . B = a 2 + 4 ab + 4 b 2 9 a 2 − 3 ab + b 2 với a ≠ − 1 3 b và a ≠ 2 b . Tìm B.
Cho a, b≥ 0 thỏa mãn: a2+ b2 ≤ 2.
Tìm giá trị lớn nhất của M= a. √(3a(a+2b)) + b. √(3b(b+2a))
Rút gọn biểu thức (a+b/b-2b/b-a).b-a/a2+b2+(a2+1/2a-1-a/2):a+2/1-2a