Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Adu vip
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:42

Ta có: \(\sqrt{2x-2+2\sqrt{2x-3}+\sqrt{2x+13+8\sqrt{2x-3}}}=5\)

\(\Leftrightarrow\sqrt{2x-2+2\sqrt{2x-3}+2\sqrt{2x-3}+4}=5\)

\(\Leftrightarrow\sqrt{2x+2+4\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot2+4+1}=5\)

\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2+1=25\)

\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2=24\)

\(\Leftrightarrow\sqrt{2x-3}+2=2\sqrt{6}\)

\(\Leftrightarrow2x-3=\left(2\sqrt{6}-2\right)^2\)

\(\Leftrightarrow2x-3=28-8\sqrt{6}\)

\(\Leftrightarrow2x=31-8\sqrt{6}\)

hay \(x=\dfrac{31-8\sqrt{6}}{2}\)

Trên con đường thành côn...
15 tháng 7 2021 lúc 21:44

undefinedundefined

Adu vip
Xem chi tiết
Yeutoanhoc
16 tháng 7 2021 lúc 8:50

`\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8sqrt{2x-3}}=5(x>=3/2)`

`<=>\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5`

`<=>\sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5`

`<=>\sqrt{2x-3}+1+\sqrt{2x-3}+4=5`

`<=>2\sqrt{2x-3}=0`

`<=>\sqrt{2x-3}=0<=>2x-3=0<=>x=3/2(tmdk)`

Vậy `S={3/2}`

Đào Chí Thành
Xem chi tiết
👁💧👄💧👁
4 tháng 9 2021 lúc 19:14

\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13-8\sqrt{2x-3}}=5\\ \Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3-8\sqrt{2x-3}+16}=5\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}-4\right)^2}=5\\ \Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}-4\right|=5\\ \Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|4-\sqrt{2x-3}\right|=5\)

Có \(\left|\sqrt{2x-3}+1\right|+\left|4-\sqrt{2x-3}\right|\ge\left|\sqrt{2x-3}+1+4-\sqrt{2x-3}\right|=\left|5\right|=5\)

Dấu "=" xảy ra ⇔ Đẳng thức ban đầu xảy ra \(\Leftrightarrow\left(\sqrt{2x-3}+1\right)\left(4-\sqrt{2x-3}\right)=0\\ \Leftrightarrow4\sqrt{2x-3}-2x+3+4-\sqrt{2x-3}=0\\ \Leftrightarrow3\sqrt{2x-3}=2x-7\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{2x-7}{3}\left(ĐK:x\ge\dfrac{7}{2}\right)\\ \Leftrightarrow2x-3=\dfrac{\left(2x-7\right)^2}{9}\\ \Leftrightarrow\left(2x-7\right)^2=9\left(2x-3\right)\\ \Leftrightarrow4x^2-28x+49-18x+27=0\\ \Leftrightarrow4x^2-40x+76=0\\ \Leftrightarrow x^2-10x+19=0\\ \Leftrightarrow\left(x^2-10x+25\right)-6=0\\ \Leftrightarrow\left(x-5\right)^2-\left(\sqrt{6}\right)^2=0\\ \Leftrightarrow\left(x-5-\sqrt{6}\right)\left(x-5+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{6}\left(tmđk\right)\\x=5-\sqrt{6}\left(ktmđk\right)\end{matrix}\right.\)

Vậy \(x=5+\sqrt{6}\) là nghiệm của pt.

Bla bla bla
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2023 lúc 13:13

\(\Leftrightarrow\sqrt[3]{2x+4}=\dfrac{2x-1+5}{\sqrt[3]{\left(2x-1\right)^2}-\sqrt[3]{5\left(2x-1\right)}+\sqrt[3]{25}}\)

\(\Leftrightarrow\sqrt[3]{2x+4}=\dfrac{2x+4}{\sqrt[3]{\left(2x-1\right)^2}-\sqrt[3]{10x-5}+\sqrt[3]{25}}\)

=>\(\sqrt[3]{2x+4}\left(\dfrac{\sqrt[3]{\left(2x+4\right)^2}}{\sqrt[3]{\left(2x-1\right)^2}-\sqrt[3]{10x-5}+\sqrt[3]{25}}-1\right)=0\)

=>2x+4=0

=>x=-2

Miền Nguyễn
Xem chi tiết
Edogawa Conan
13 tháng 8 2021 lúc 21:07

ĐK:\(x\ge\dfrac{5}{2}\)

Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)

    \(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)

    \(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)

    \(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

    \(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

    \(\Leftrightarrow2\sqrt{2x-5}=10\)

    \(\Leftrightarrow\sqrt{2x-5}=5\)

    \(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)

Nguyễn Việt Lâm
13 tháng 8 2021 lúc 21:10

ĐKXĐ: \(x\ge\dfrac{5}{2}\)

\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)

\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow x=15\)

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

khong có
Xem chi tiết
Nguyễn An
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Tử Nguyệt Hàn
24 tháng 8 2021 lúc 18:05

\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)

Akai Haruma
24 tháng 8 2021 lúc 18:18

Lời giải:
a.

PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)

b.

ĐKXĐ: $x\geq \frac{3}{2}$

PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)

\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)

\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)

\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:56

a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)

\(\Leftrightarrow\left|x-3\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\left(nhận\right)\)