Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thùy
Xem chi tiết
Nguyễn Phương My
7 tháng 10 2017 lúc 16:10

Sr chụy nha, em chưa học tới ~ :]]]

Tuyển Trần Thị
7 tháng 10 2017 lúc 18:04

bdt tương đương với  \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)

\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)

neu ac+bd \(\le0\) thi bdt can duoc cm 

neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)

                \(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

 \(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)

lộc Nguyễn
Xem chi tiết
Nguyễn Hải Minh
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Khách vãng lai đã xóa
Trần Mai
Xem chi tiết
Lê Thành Vinh
4 tháng 5 2020 lúc 9:14

đề em viết chưa đủ dữ kiện

Khách vãng lai đã xóa
Diệu Anh Hoàng
Xem chi tiết
Trần Việt Anh
9 tháng 3 2019 lúc 19:15

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

Không Tên
9 tháng 3 2019 lúc 19:16

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

Trần Việt Anh
9 tháng 3 2019 lúc 19:18

a) Áp dụng bđt AM-GM ta có:

\(\hept{\begin{cases}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{cases}}\)

nhân theo 3 vế BDDT ta đc:

( a^2+1) (b^2+1)(c^2+1) >= 2a.2b.2c = 8abc

"=" <=> a=b=c

nguyễn minh quý
Xem chi tiết
Bùi Như Quỳnh
Xem chi tiết
CLB Yêu Toán ❤❤
17 tháng 7 2021 lúc 17:06

Vì x < y nên a/b<c/d

=>a.b+a.d<b.c+b.a

=>a.(b+d)<b.(c+a)

=>a/b<c+a/b+d

=>a/b<c+a/b+d<c/d

 

Quang Ánh
Xem chi tiết
Shinichi Kudo
Xem chi tiết
võ thành
Xem chi tiết