Với a,b,c,d là các số thực bất kỳ,chứng minh rằng nếu a>b,c>d
thì a+c>b+d
Cho 4 số thực a,b,c,d bất kỳ chứng minh rằng: \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
bdt tương đương với \(a^2+b^2+c^2+d^2+2ac+2bd\le a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)
\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+d^2\right)}\ge ac+bd\)
neu ac+bd \(\le0\) thi bdt can duoc cm
neu ac+bd \(\ge0\) thi \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow b^2c^2+a^2d^2-2abcd\ge0\Leftrightarrow\left(bc-ad\right)^2\ge0\left(dpcm\right)\)
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Cho 2 phân số a/b và c/b (a,b,c,d là các số nguyên dương).
Chứng minh rằng nếu a/b<c/d thì b/a>d/c
đề em viết chưa đủ dữ kiện
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a) Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{cases}}\)
nhân theo 3 vế BDDT ta đc:
( a^2+1) (b^2+1)(c^2+1) >= 2a.2b.2c = 8abc
"=" <=> a=b=c
cho các số nguyên dương a, b, c, d sao cho a>b, c>d. chứng minh rằng nếu a+b+c+d=ab-cd thì a+c là hợp số
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng:
nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d
help me
Vì x < y nên a/b<c/d
=>a.b+a.d<b.c+b.a
=>a.(b+d)<b.(c+a)
=>a/b<c+a/b+d
=>a/b<c+a/b+d<c/d
Chứng minh rằng với mọi a, b, c và d là các số nguyên thì T = (a - b )(a - c)(a - d)(b - c)(b - d)(c - d) chia hết cho 12
cho các số hữu tỉ x=a/b, y=c/d,b>0,d>0 và các số tự nhiên m, n với m khác 0, n khác 0.Chứng minh rằng nếu a/b < c/d thì a/b < m.a+ n.c/m.b + n.d < c/d
ài1:cho đoạn thẳng AB,điểm C cách đều hai điểm A và B,điểm A và B ,điểm D cách điểm A và B (C và D nằm khác phía đối với AB)
a,chứng minh rằng CD là tia phân giác của góc ACB
b,kết quả của câu a có đúng ko nếu C và D nằm cùng phía đối với AB
Bài 2:Cho góc xOy có Ot là tia phân giác . trên tia Ot lấy điểm M bất kỳ ,trên các tia Ox,Oy lần lượt lấy các điểm D và B sao cho OD = OB
a,chứng minh:MD=MB
b,gọi H là giao điểm của DB và Ot.Chứng minh OM là đường trung trực của DB.
c, cho biết DB=6cm,OD=5cm.tính OH?
d,nếu góc xOy là góc vuông thì tam giác ODH là tam giác gì?