Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Anh Tú
Xem chi tiết
Hoàng Anh Tú
Xem chi tiết
Thái Huỳnh
Xem chi tiết
Lightning Farron
21 tháng 6 2017 lúc 22:01

a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)

\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)

\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)

Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)

b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)

\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)

Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)

Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)

Hoàng Anh Tú
Xem chi tiết
Ngu Người
17 tháng 9 2015 lúc 21:58

đề sai sao ý, cái căn thứ 2

PHạm Thanh Phu
Xem chi tiết
Đinh Đức Hùng
7 tháng 6 2017 lúc 12:08

Ta có :

\(\sqrt{9x^2-6x+2}=\sqrt{\left(9x^2-6x+1\right)+1}=\sqrt{\left(3x-1\right)^2+1}\ge\sqrt{1}=1\)

\(\sqrt{45x^2-30x+9}=\sqrt{5\left(9x^2-6x+1\right)+4}=\sqrt{5\left(3x-1\right)^2+4}\ge\sqrt{4}=2\)

\(\sqrt{6x-9x^2+8}=\sqrt{-\left(9x^2-6x+1\right)+9}=\sqrt{-\left(3x-1\right)^2+9}\le3\)

\(\Rightarrow VT\ge3\ge VP\)

mÀ đề lại cho \(VT=VP\) \(\Rightarrow\hept{\begin{cases}\sqrt{\left(3x-1\right)^2+1}=1\\\sqrt{\left(3x-1\right)^2+4}=2\\\sqrt{-\left(3x-1\right)^2+9}=3\end{cases}\Rightarrow x=\frac{1}{3}}\)

Vậy \(x=\frac{1}{3}\)

hazzymoon
7 tháng 6 2017 lúc 12:50

x=1/3 nha

Đổ Viết Tuấn
19 tháng 6 2017 lúc 8:14

X=1/3 đấy !!!!

Nguyễn Đức Lâm
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
vương gia kiệt
Xem chi tiết
Đạm Đoàn
Xem chi tiết