Đường tròn tâm O đường kính AB= 10cm. Dây cung CD vuông góc với AB tại E; AE=1cm.Tiếp tuyến tại C và B cắt nhau tại K. AK và CE cắt nhau tại M
a) chứng minh tam giác AEC đồng dạng với tam giác OBK. tính BK
b) Diện tích tanm giác CKM=?
Cho đường trong tâm O, đường kính AB, điểm E là điểm bất kì thuộc đường kính AB (E khác A,B). Vẽ đường tròn tâm O', đường kính EB, qua trung điểm H của AE. Vẽ dây cung CD của đường tròn O và vuông góc với AE, BC cắt đường tròn O' tại I. CM:
a, 3 điểm I, E, D thẳng hàng
b, HI là tiếp tuyến của đường tròn O"
c, Tam giác CHo = tam giác HIO'
d, HA2 + HB2 + HC2 + HD2 không đổi khi E chuyển động trên đường kính AB
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
Xét (O) có
\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AEB}=90^0\)
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{FIB}=180^0\)
nên BEFI là tứ giác nội tiếp
hay B,E,F,I cùng thuộc 1 đường tròn
Cho đường tròn tâm O . Đường kính CD vuông góc với dây cung AB tại E , C thuộc cung lớn AB , MC cắt AB tại N, MA cắt CD tại F . a, Chứng minh rằng MNED nội tiếp b, MF . FA = DF .FC
a: góc NMD=1/2*180=90 độ
góc NED+góc NMD=180 độ
=>NMDE nội tiếp
b: Xét ΔFMC và ΔFDA có
góc FMC=góc FDA
góc F chung
=>ΔFMC đồng dạngvói ΔFDA
=>FM/FD=FC/FA
=>FM*FA=FD*FC
Cho đường tròn tâm O đường kính AB = 10cm. Điểm I nằm giữa A và O sao cho OI = IA. Vẽ dây cung CD vuông góc với Oa tại I. Gọi H là trung điểm của IC. Qua H vẽ đường thẳng vuông góc với CO cắt CO tại M và cắt (O) tại E; F. Chúng minh rằng AB là tiếp tuyến của (C; CE).
Cho đường tròn tâm O đường kính AB = 10cm. Điểm I nằm giữa A và O sao cho OI = IA. Vẽ dây cung CD vuông góc với Oa tại I. Gọi H là trung điểm của IC. Qua H vẽ đường thẳng vuông góc với CO cắt CO tại M và cắt (O) tại E; F. Chúng minh rằng AB là tiếp tuyến của (C; CE).
Cho đường tròn tâm O đường kính AB = 10cm. Điểm I nằm giữa A và O sao cho OI = 3/2IA. Vẽ dây cung CD vuông góc với Oa tại I. Gọi H là trung điểm của IC. Qua H vẽ đường thẳng vuông góc với CO cắt CO tại M và cắt (O) tại E; F. Chúng minh rằng AB là tiếp tuyến của (C; CE).
cho đường tròn tâm O đường kính AB. vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F chứng minh:
IA.IB=IC.ID VÀ AE.AF=\(AC^2\)(Biết BEFI đã nội tiếp đường tròn)
Xét ΔIAC vuông tại I và ΔIDB vuông tại I có
góc IAC=góc IDB
=>ΔIAC đồng dạng với ΔIDB
=>IA/ID=IC/IB
=>IA*IB=ID*IC
Xét ΔACF và ΔAEC có
góc ACF=góc AEC
góc CAF chung
=>ΔACF đồng dạng với ΔAEC
=>AC/AE=AF/AC
=>AC^2=AE*AF
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
a) \(\Delta ABE\)nội tiếp đường tròn đường kính \(AB\)
\(\Rightarrow\)\(\Delta ABE\perp E\)
\(\Rightarrow\)\(AEB\lambda=90\)độ
Tứ giác\(BEFI\)nội tiếp đường tròn đường kính \(FB\)
Cho đường tròn (O) đường kính AB. Vẽ dây CD không qua tâm vuông góc với AB tại I (A thuộc cung nhỏ CD) biết CD=16cm ; IA=6cm. Tính bán kính của (O;R)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔACB vuông tại C
ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
=>IC=ID=CD/2=8cm
Xét ΔCAB vuông tại C cso CI là đường cao
nên CI^2=IA*IB
=>8^2=6*IB
=>IB=64/6=32/3(cm)
AB=IB+IA=32/3+6=50/3(cm)
=>R=50/3:2=25/3(cm)