tìm x,y,z thuộc Z thỏa mãn
a. \(3^{x+1}.5^y=45^x\)
tìm x,y thuộc Z thỏa mãn
a. \(3^{x+1}.5^y=45^x\)
\(\Leftrightarrow3^{x+1}\cdot5^y=3^2\cdot5^1\)
=>x+1=2 và y=1
=>x=1 và y=1
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
Tìm x,y,z thỏa: x/y+z-5=y/x+z+3=z/x+y+2=1/2(x+y+z)
Giải : Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{1}{2\left(x+y+z\right)}\)
\(=\frac{x+y+z}{\left(y+z-5\right)+\left(x+z+3\right)+\left(x+y+3\right)}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (vì x + y + z \(\ne\)0)
==> \(\frac{1}{2\left(x+y+z\right)}=\frac{1}{2}\) => \(x+y+z=1\)
==> \(\frac{x}{y+z-5}=\frac{1}{2}\) => \(y+z-5=2x\) => \(x+y+z-5=3x\) => 1 - 5 = 3x => -4 = 3x => \(x=-\frac{4}{3}\)
==> \(\frac{y}{x+z+3}=\frac{1}{2}\) => \(x+z+3=2y\) => \(x+y+z+3=3y\) => \(1+3=3y\) => \(4=3y\)=> \(y=\frac{4}{3}\)
==> \(\frac{z}{x+y+2}=\frac{1}{2}\) => 2z = x + y + 2 => 2z = -4/3 + 4/3 + 2 => 2z = 2 => z = 1
Vậy x,y,z thõa mãn là : \(-\frac{4}{3};\frac{4}{3};1\)
Edogawa Conan Thanks nhìu nha bạn
Tìm x và y :
a) 1/x - y/6 = 1/3 ( x;y thuộc Z )
b)x/2 + 3/y = 5/4 ( x;y thuộc Z )
c) 5^(x+5)(x^2-4) =1 ((x+5)(x^2-4) là mũ của 5 nha)
d) 3^x+2 . 5y =45
MÌNH ĐAG CẦN GẤP AI LÀM NHAN HMÌNH TICK CHO
1.Tìm x thuộc Z lớn nhất thỏa mãn:
a.x<800/-50
b.x<-533/41
c.x<-513/-19
2. Tìm x,y thuộc N, biết:
3+x/5+y=3/5 và x+y= 16
3. Tìm x,y thuộc Z biết:
X-7/9-6=7/6 và x-y=-4
Tìm các nguyên x và y thỏa mãn
a) x.(y - 3) = 17
b) (x - 1) .(y + 2) = 7
c) 3x. (y + 1) + y + 1 = 7
a: \(\Leftrightarrow\left(x;y-3\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;20\right);\left(17;4\right);\left(-1;-14\right);\left(-17;2\right)\right\}\)
b: \(\Leftrightarrow\left(x-1;y+2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;5\right);\left(8;-1\right);\left(0;-9\right);\left(-6;-3\right)\right\}\)
c: =>(y+1)(3x+1)=7
=>\(\left(3x+1;y+1\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(2;0\right)\right\}\)
a) Tìm x thuộc Z biết: /x+5/ -(-17)=20
b) Tìm các cặp sood nguyên x,y thỏa mãn: (x - 2) . (y + 3) = 15
c) Tìm giá trị nhỏ nhất của biểu thức: A=/x -2/ + /y + 5/ - 10 vỡi,y thuộc Z
Cho x, y, z thuộc Z thỏa mãn x-y+z=2016. Tìm x, y, z, biết:
\(x^3-y^3+z^3=2017^2\)
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2