Cho tam giác ABC vuông tại A, BD là phân giác, kẻ AE vuông góc BD, AE cắt BC ở K CM AC//CE
Cho tam giác ABC vuông tại A, BD là phân giác, kẻ AE vuông góc BD, AE cắt BC ở K CM AC//CE
cho tam giác ABc vuông tại A, đường phân giác BD. kẻ AE vuông góc với BD, AE cắt BC ở K
a) biết ac= 8cm, ab = 6CM tính BC
b) tam giác ABK là tam giác gì
c) cM DK vuông góc BC
d kẻ AH vuông với BC, CM AK là phân giác của góc Hac
a) Có tam giác ABC vuông tại A
=>\(BC^2=AC^2+AB^2\) ( định lí Pitago)
=>\(BC^2=8^2+6^2=100\)
=> BC=10 (cm)
b) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)
=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)
=> BA=BK ( 2 cạnh tương ứng)
Vạy tam giác ABK cân tại B
c) Nối D với K, ta có tam giác DKE vuông tại E
Theo câu b, ta có tam giác ABE= tam giác KBE
=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)
Xét tam giác vuông DEA và tam giác vuông DEK có
Cạnh DE chung
EA=KE
=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)
=> Góc DAE=góc DKE (2)
Từ (1) và (2) =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ
=> Góc DKB= 90 độ
Vậy DK vuông góc với BC
d)
Có \(DK⊥BC,AH⊥BC\) =>DK//AB
=> góc DKE= góc EAH (1)
Có tam giác DEA=tam giác DEK
=> góc DAE= góc DKE (2)
Từ (1) và (2) => góc EAH= góc DAE hay góc CAK= góc KAH
Vậy AK là phân giác của góc HAC
cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại D. Kẻ AE vuông góc BD(E thuộc cạnh BD), AE cắt BC ở K. Kẻ AH vuông góc BC( H thuộc BC). gọi I là giao điểm của AH và BD. Chứng minh tứ giác IKDA là hình thoi
Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)
\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK
Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)
\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)
Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp
\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)
\(\Rightarrow\)\(AI\parallel KD\)
Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)
BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)
\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành
mà \(IA=IK\Rightarrow IKDA\) là hình thoi
tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AAE cắt BC ở K
a) chứng minh tam ABK cân tại B
b) CM DK vuông góc BC
c) Kẻ AH vuông góc BC. CM: AK là phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD. CM IK// AC
a) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
DBA=DBK hay EBA=EBA ( vì BD là phân giác của góc ABC)
=>\(\Delta ABE=\Delta KBE\) ( cạnh góc vuông- góc nhọn)
=>BA=BK
Vậy tam giác ABK cân tại B
b) Xét \(\Delta ABD\) và \(\Delta KBD\) có
AB=BK
ABD=KBD
Cạnh BD chung
=> \(\Delta ABD=\Delta KBD\left(c.g.c\right)\)
=> DKB=DAB=90 độ
Vậy \(DK⊥BC\)
c)d)
Xét \(\Delta ABI\) và \(\Delta KBI\) có
BA=BK
ABI=FBI
Cạnh BF chung
=> \(\Delta ABI=\Delta KBI\left(c.g.c\right)\)
=> IA=IK
Ta có DA=DK, IA=IK hay ID là đường trung trực của AK
=>AE=EK
Có \(DK⊥BC,AH⊥BC\) => DK//AH
=>DKE=EAI( 2 góc so le trong)
Xét tam giác vuông DKE và tam giác vuông EAI có
AE=EK
DKE=EAI
=> \(\Delta DKE=\Delta EAI\)(cạnh góc vuông- góc nhọn)
=>DK=AI
Mà DK=DA
=>AI=AD
Xét tam giác vuông DAE và tam giác vuông IAE có
DA=DI
Cạnh AE chung
=> \(\Delta DAE=\Delta IAE\)( cạnh huyền- cạnh góc vuông)
=>DAE=EAI hay góc CAK= góc KAH
Vậy AK là phân giác của HAC
Xét tam giác vuông IKE và tam giác vuông EAD có
AE=EK
KEI=AED( 2 góc đối đỉnh)
=>\(\Delta IKE=\Delta EAD\)( cạnh góc vuông- góc nhọn)
=>IKE=EAD
Mà IKE và EAD là 2 góc so le trong =>IK//AC
cho tam giác ABC vuông tại A, phân giác góc ABC cắt cạnh AC tại điểm D. Kẻ DE vuông góc với BC tại E. a, Chứng minh: tam giácABD= tgEBD b,CM: góc DAE=góc DEA c,Đường thẳng vuông góc với AE tại E cắt AC ở F. Gọi I là giao điểm của BD và AE. Lấy K là trung điểm của EF. CM: BD là trung trực của AE và 3 đường thẳng AK,FI,ED đồng quy
Giúp với ạ cần gấp
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
=>góc DAE=góc DEA
c: BA=BE
DA=DE
=>BD là trung trực của AE
Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
A) Chứng minh tam giác ABK cân tại B.
B) chứng minh DK vuông góc BC
C) kẻ AH vuông góc BC. Chứng minh AK là là tia phân giác của góc HAC.
D) Gọi I là giao điểm của AC và BD. Chứng minh AK//AC.
a: Xét ΔBAK có
BE là đường cao
BE là đường trung tuyến
Do đó: ΔBAK cân tại B
b: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
cho tam giác ABC vuông tại A. kẻ phân giác BD của B (D thuộc AC), kẻ AH vuông góc BD (H thuộc BD), AH cắt BC tại E.
a) CM: tam giác BHA= tam giác BHE
b) CM: ED vuông góc BC
c) Kẻ AK vông góc BC (K thuộc BC) .CM AE là phân giác của CAK
Cho tam giác ABC vuông tại A , đường phân giác BD . kẻ AE vuông góc BD ,
AE cắt BC ở K .
a, CM : tam giác ABK cân tại B
b, CM : DK vuông góc vs BC
c, KẺ AH vuông góc BC . CM : AK là tia Phân giác của Góc HAC
d, gọi I là giao điểm của AH và BD. Cm : IK song song AC
giúp mik nha
a) xét ABE vuông tại E và KBE vuông tại E
có góc ABE =KBE(gt)
BE chug
=> ABE=KBE ( ch -gn)
=> AB=KB( cạnh t/ư)
=> ABK cân tại B
b) xét ABD và KBD
có AB=KB
ABD=KBD
BD chung
=> ABD = KBD( cgc)
=> BAD = BKD
mà BAD = 90 độ
=> BKD =90 độ
hay DK vuông góc BC tại K
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ AE vuông góc với BD( E thuộc BD), AE cắt BC ở K.
1, Tam giác ABK là tam giác gì ?
2,CM DK vuông góc với BC
3,Kẻ AH vuông góc với B( H thuộc BC). CM: AK là tia phân giác của góc HAC
4,Gọi I là giao điểm của AH và BD.CMR : IK song song AC
ai giúp mình tich cho