Bài 1 :Chứng tỏ rằng 2n+1 và 3n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Bài 2: Tìm ƯCLN (2n-1 ; 9n+4)
NHANH LÊN NHÉ
a, Với n là số nguyên dương ,chứng tỏ rằng:
3n+2 và 2n+1 là các số nguyên tố cùng nhau.
b, Tìm ƯCLN và BCNN của 2 số : n và n+2 (n thuộc Z*)
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
1) Chứng tỏ rằng 2n + 5 và 3n+7 là 2 số nguyên tố cùng nhau
2) tìm x,y thuộc N
4x-xy=15
ai giải jup bài này đi
gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
1) Chứng tỏ : 2n+5 và 3n+7 ( n thuộc N) là 2 số nguyên tố cùng nhau
Gọi UCLN (2n+5;3n+7) là d
Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d
=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên
(3x+22):8+10=12
5-|3-x|=3
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Bài tập 1: Tìm tất cả các ước chung của 5n + 2 và 8n + 1
Bài tập 2: Chứng tỏ rằng với mọi số tự nhiên n thì hai số 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Bài 1: Chứng tỏ rằng với mọi số tự nhiên n thì hai số nguyên tố cùng nhau
a) n+2 và n+3
b) 2n+3 và 3n+5
a: Gọi d=ƯCLN(n+3;n+2)
=>n+3-n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+3;3n+5)
=>6n+9-6n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>2n+3 và 3n+5là hai số nguyên tố cùng nhau
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
1 Chứng tỏ rằng các số sau nguyên tố cùng nhau
n+1 và n+2
3n+4 và 3n+5
2n+1 và n+1
2n+1 Và 6n+5
Làm mẫu 2 phần nhé, 2 phần còn lại tương tự, ez lắm!
1) G/s \(\left(n+1;n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> n+1 và n+2 NTCN
3) G/s: \(\left(2n+1;n+1\right)=d\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(n+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\2\left(n+1\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> đpcm
Bài 1 : Tìm ƯC của 2 số
a ) n và n + 6
b ) n + 1 và 2n + 6
Bài 2 : Chứng tỏ hai số sau là hai số nguyên tố cùng nhau
a ) n + 1 và 3n + 4
b ) 2n + 1 và 3n + 1
Bai 2:a)
Goi d thuôc UC(n+1;3n+4)
Suy ra:3n+4chia hêt cho d
n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d
Suy ra :3n +4 -3n -3
chia hêt cho d suy ra 1chia hêt cho d suy ra d = 1
VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau