mn giúp mih hâhhaha
2016^2015 và 2015^2016
So sánh A= (20162015 + 20152015 )2016 và B= ( 20162016 + 20152016) 2015
Các bạn ơi giúp mk với!!!!
Ta có :
A= (20162015 + 20152015 )2016
A= 20162015 . 2016 + 20152015 . 2016 (1)
B= ( 20162016 + 20152016) 2015
B= 20162016 . 2015 + 20152016 . 2015 (2)
Từ (1) và (2) suy ra A = B
So sánh A = \(\dfrac{10^{2014}+2016}{10^{2015}+2016}\) và B = \(\dfrac{10^{2015}+2016}{10^{2016}+2016}\) giúp mình nhanh với
\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)
\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)
mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)
nên A>B
Cho |3x-1|^2015 +(2x-y)^2016≤0
Tính A=-2x^2-xy+y^2+2016
ai giúp mih với
sắp thi r
Giúp mk với
(1/2+2015/2016+2016/2017+1)(2015/2016+2016/2017+7/22)-(1/2+2015/2016+2016/2017)(2015/2016+2016/2017+7/22+1)
Cho A=\(1\over1.2\)+\(1\over2.3\)+\(1\over3.4\)+...+\(1\over n(n+1)\) Với nthuộc N và N lớn hơn hoặc bằng 1
So Sánh A và 1
A=(20162015+20152015)2016
B=(20162016+20152016)2016
So Sánh A và B
mong mn giúp e ạ xg trc e click cho ạ
Homie ơi, giúp mình với:
1) So sánh:
a) -2016/2017 và -2015/2016
b) 2017/-2016 và 2016/-2015
a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)
b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và
\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)
\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và \(\frac{2015}{2016}\)< \(\frac{2017}{2016}\)và \(\frac{2016}{2015}\)
Mn ơi giúp mình nhé mai mình phải nộp rồi!
^-^ <3<3<3
So Sánh Lũy Thừa Sau Và nêu cách làm
2015^2016 VÀ 2016^2015
Ta có: \(2015^{2016}=2015^{2000}.2015^{16}\)
Và \(2016^{2015}=2016^{2000}.2016^{15}\)
=> Ta có: \(2015^{2000}< 2016^{2000}\)
\(2015^{16}< 2016^{15}\)
Vậy \(2015^{2016}< 2016^{2015}\)
HỒ KHÁNH CHÂU bạn có thể nêu rõ hơn được không
THANK BẠN NHIỀU
LẦN SAU BẠN GIẢI MỘT SỐ BÀI TẬP GIÚP MIH NỮA NHÉ
So sánh A và B:
A=2015/2016+2016/2017+2017/2018
B=2015+2016+2017/2016+2017+2018
giúp mk nha!!!!!!!
A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)
1) So sánh 20162015 và 20152016
2) So sánh 22014 và 5891
3) So sánh (20152016+20162016)2015 và (20152015+20162015)2016
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)