Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Đạt Lương
Xem chi tiết
Cô Hoàng Huyền
8 tháng 5 2017 lúc 10:58

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, D] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [C, O] Đoạn thẳng n: Đoạn thẳng [O, J] Đoạn thẳng p: Đoạn thẳng [A, J] O = (1.28, 3.2) O = (1.28, 3.2) O = (1.28, 3.2) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Giao điểm của c, f Điểm C: Giao điểm của c, f Điểm C: Giao điểm của c, f Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm I: Tâm của d Điểm I: Tâm của d Điểm I: Tâm của d Điểm N: Giao điểm của g, k Điểm N: Giao điểm của g, k Điểm N: Giao điểm của g, k Điểm J: Giao điểm của c, m Điểm J: Giao điểm của c, m Điểm J: Giao điểm của c, m

a. Cô sửa thành AM2 = CM.CD

Xét tam giác ACM và DCA có: \(\widehat{C}\) chung, \(\widehat{CAM}=\widehat{CDA}\) (Chắn hai cung CB và CA bằng nhau)

Vậy thì \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{AC}{CD}=\frac{CM}{CA}\Rightarrow CA^2=CD.CM\)

b.  C là điểm chính giữa cung AB nên OC vuông góc AB tại trung điểm N. Gọi I là tâm đường tròn ngoại tiếp tam giác ADM. AI cắt (O) tại J.

Do câu a: \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\widehat{CAD}=\widehat{CMA}\)

Lại có \(\widehat{JAD}=\widehat{JCD}\) nên \(\widehat{JAD}+\widehat{DAC}=\widehat{JCD}+\widehat{CMA}=90^o\Rightarrow\widehat{CAJ}=90^o\)

Vậy CJ là đường kính (O) hay J cố định, từ đó suy ra Ạ cố định. Lại có tâm I luôn thuộc AJ nên ta đã chứng minh được tâm đường tròn ngoại tiếp tam giác ADM thuộc một đường thẳng cố định.

Lầy Văn Lội
8 tháng 5 2017 lúc 11:30

em thấy không ổn lắm ạ vì \(\widehat{JCD}\ne\widehat{OCD}\)

Cô Hoàng Huyền
8 tháng 5 2017 lúc 14:16

Cô sửa lại một phần câu b: Gọi các điểm như bên trên.

Xét đường tròn (O): \(\widehat{CDA}=\frac{1}{2}\widehat{COA}\) (Góc nội tiếp và góc ở tâm cùng chắn một cung)

Xét đường tròn (I): \(\widehat{CDA}=\widehat{MDA}=\frac{1}{2}\widehat{MIA}\) (Góc nội tiếp và góc ở tâm cùng chắn một cung)

Vậy nên \(\widehat{COA}=\widehat{MIA}\). Lại có OAC và MIA là các tam giác cân nên \(\widehat{ACO}=\widehat{IAM}\Rightarrow\widehat{CAI}=\widehat{IAM}+\widehat{MAC}=\widehat{ACO}+\widehat{MAC}=90^o\)

Vậy ta có kết luận như trên.

nguyen ngoc duong
Xem chi tiết
Lê Thu Trà
Xem chi tiết
Nguyễn Hoàng Minh Đức
Xem chi tiết
Ngô Võ Thùy Nhung
14 tháng 4 2016 lúc 12:46

- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .

- A’H’ song song với BC ( vì cùng vuông góc với AH )

- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.

Bùi Giao Hòa
14 tháng 4 2016 lúc 12:49

Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’

- Chứng minh IH=IH’ . Thật vậy

          Ta có : \(\widehat{A}=\widehat{BCH'}\) ( Góc nội tiếp chẵn cung BH’ ).(1)

Mặt khác : \(\begin{cases}CH\perp AB\\CI\perp AH'\end{cases}\)\(\Rightarrow\widehat{A}=\widehat{BCH}\) (2)

Từ (1) và (2) suy ra : \(\widehat{BCH}=\widehat{BCH'}\)

Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC

- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C 

Giang Bằng
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết
Lê Nhật Bảo Khang
14 tháng 4 2016 lúc 11:38

- Kẻ đường kính BB’ .Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định \(\overrightarrow{\Rightarrow AH}=\overrightarrow{B'C}\)

Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H . Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo \(\overrightarrow{v}=\overrightarrow{B'C}\)

- Cách xác định đường tròn (O’;R) . Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : \(\overrightarrow{OO'}=\overrightarrow{B'C}\). Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

gấukoala
Xem chi tiết