CMR:
28n.56n-1980n-441n+1⋮2004
Cmr \(\forall\)số tự nhiên n khác 0 ta luôn có:
N^3+3n^2-28n+2004 \(⋮\)6
Giải đầy đủ giúp mình nhé
Giải chi tiết giúp em ạ Tổng số hạt trong nguyên tử A là 76, số hạt mang điện nhiều hơn số hạt không mang điện là 20. Chọn đáp án đúng: A/ A có 24e ; 24p ; 245n B/ A có 24e ; 24p ; 28n C/ A có 20e ; 20p ; 56n D/ A có 28e ; 28p ; 24n
Ta có :
2Z + N = 76
2Z - N = 20
=> Z = p = e = 24
N = 28
=>A
\(A=2+2\sqrt{28n^2+1}\)
CMR \(\sqrt{28n^2+1}\in Z\) thì A là số chính phương
\(n=\frac{\left(127+24\sqrt{28}\right)^k-\left(127-24\sqrt{28}\right)^k}{2\sqrt{28}}\)
k thuộc N*
\(A=2+2\sqrt{28n^2+1}\)
với n thuộc N*
CMR nếu \(\sqrt{28n^2+1}\) là số nguyên thì A là số chính phương
Tìm công thức của n để thỏa mãn điều ở trên
\(\sqrt{28n^2+1}=k\)
\(A=2k+2=4\left(\frac{k+1}{2}\right)\)
\(k^2=28n^2+1\)
\(k^2-1=28n^2\)
\(\frac{k^2-1}{28}=n^2\)
Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7
\(k^2\equiv1\left(mod7\right)\)
\(k\equiv1\)(mod7)
k-1 chia hết cho 7
Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)
2 số trên nguyên tố cùng nhau
mà tích là số chính phương nên 2 số trên đều là số chính phương
(k+1)/2 chính phương
\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp
\(A=2+2\sqrt{28n^2+1}\) với n thuộc N*
CMR nếu \(\sqrt{28n^2+1}\)là số nguyên thì A là số chính phương
Tìm công thức của n để thỏa mãn điều ở trên
CMR: A=1.2.3...2004.(1+1/2+1/3+...+1/2004) chia hết cho 2005
Ta có: 1.2.3.4...2004 = 1.2.3.4.5...401...2004 = [5.401].1.2.3.4.6....2004 = 2005.1.2.3....2004 chia hết cho 2005
=> Khi nhân với 1 + 1/2 + ... + 1/2004 cũng chia hết cho 2005
AI THẤY ĐÚNG NHỚ ỦNG HỘ
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{1}{2004}\right)+\left(\frac{1}{2}+\frac{1}{2003}\right)+\left(\frac{1}{3}+\frac{1}{2002}\right)+...+\left(\frac{1}{1002}+\frac{1}{1003}\right)\)
\(=\frac{2005}{1.2004}+\frac{2005}{2.2003}+\frac{2005}{3.2002}+...+\frac{2005}{1002.1003}\)
\(=2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+\frac{1}{3.2002}+....+\frac{1}{1002.1003}\right)\)
\(\Rightarrow A=1.2.3.....2004.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\right)\)\(=1.2.3.....2004.2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+....+\frac{1}{1002.1003}\right)\)chia hết cho 2005 (đpcm)
CMR :A = (1986^2004-1)/(1000^2004-1) không thể là số nguyên
cmr 1-1/(2^2)-1/(3^2)-1/(4^2)-....-1/(2004^2)>1/2004
1, CMR
1/3+1/32+1/33+1/34+...+1/32004+1/32005 <1/2
2, CMR
1-1/22-1/32-1/42-...-1/20042 >1/2004