Giá trị của x biết: \(a+b=ab=\frac{a}{b}\)
Tìm ba số dương a,b,c biết ab= c, bc = 4a, ac= 9b. Trả lời a=..., b=....., c=...
Giá trị x lớn nhất thõa mãn [ 2x-4 ] - [ 6x-3] = -1 là ...
GIá trị nhỏ nhất của A= \(\frac{-15}{\left[x-4\right]+1}\)là...
Giá trị của x và y biết [ x- y + 5 ] + [ x-1] = 0 laf...
Giá trị lớn nhất của A = 50 - [ 2x+3] là...
Biết \(\frac{x}{3}=\frac{y+1}{4}vàx-y=0\)Khi đó x^2 = y^2 = ....
Rút gọn biểu thức A = \(\frac{2b\left(2a-1\right)+6a-3}{2a+2ab-b-1}+2012vớia\ne\frac{1}{2};b\ne-1\).Ta được A = ...
Giải chi tiết giùm mình, mình tick cho
giá trị của b biết a+b=ab=\(\frac{a}{b}\)
cho a, b, c là các số thực thỏa mãn: a=8-b; c2=ab - 16. Tính giá trị của a+c.
cho \(\frac{a}{b+c}=\frac{b}{a+c}\left(a\ne\pm b;a\ne-c;b\ne-c\right)\) Tính \(M=\frac{c}{a+b}\)
Tính giá trị biểu thức \(P=\frac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)
Biết x thỏa mãn \(\frac{x}{x^2+x+1}=\frac{1}{4}\)
Giá trị của b biết: a + b = ab = \(\frac{a}{b}\)
1/ CMR : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
2/ Xét \(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
a/ rút gọn
b/ tìm GTNN mà A đạt được biết a + b = 4
3/ CMR giá trị biểu thức biểnsau ko phụ thuộc vào giá trị của biến
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\) khi \(x\ne0;y\ne0;x\ne y\)
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
\(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
\(A=\left[\frac{\left(a+1\right)\left(ab-1\right)+\left(ab+a\right)\left(ab+1\right)-\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{\left(a+1\right)\left(ab-1\right)-\left(ab+a\right)\left(ab+1\right)+\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{a^2b-a+ab-1+a^2b^2+ab+a^2b+a-a^2b^2+1}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{a^2b-a+ab-1-a^2b^2-ab-a^2b-a+a^2b^2-1}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{2a^2b+2ab}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a^2b-2a}{\left(ab+1\right)\left(ab-1\right)}\right]\)
\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)
\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a}{\left(ab+1\right)}\right]\left(ab-1\ne0\right)\)
\(A=\frac{b\left(a+1\right)}{ab-1}\left(ab+1\ne0;2a\ne0\right)\)
Tìm giá trị của b biết:
a+b=ab=\(\frac{a}{b}\)
a) Tính giá trị của biểu thức M = \(\frac{a}{ab+a+3}+\frac{b}{bc+b+1}+\frac{3c}{ac+3c+3}\), biết abc = 3
b) Cho các số thực không âm x,y,z thỏa mãn điều kiện xy + yz + xz = 1. Tìm giá trị nhỏ nhất của P = 10x2 + 10y2 + z2.
a, Ở phân số tử là a đầu tiên, thì nhân cả tử và mẫu cho c. Ở phân số thứ 2 có tử là b, nhân với ac, còn phân số còn lại giữ nguyên. Thì bạn sẽ có 3 phân số cùng mẫu nhé :3 Xong công vào ra 1 ^^
b, Viết bình phương (x+y+z)^2= bla blo :v Xong thay giữ kiện xy +yz+zx = 1 vào là done. Xong để có 10x^2+10y^2+z^2 thì dễ rồi nhé ^^
a. Câu hỏi của Nguyễn Văn An - Toán lớp 8 - Học toán với OnlineMath
tìm giá trị của a,b,c,b biết
a)ab= \(\frac{3}{5};bc=\frac{4}{5};cd=\frac{3}{4}\)
Cho tam giác ABC có độ dài ba cạnh BC, AC ,AB lần lượt là a, b, c thỏa mãn \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}=\frac{a+b+c}{2}\) biết a=2cm. Giá trị của b =?
mối ràng buộc giữa a,b,c vì nếu a,b,c thuộc R và ko có mối liên hệ a,b,c thì ko có GTNN của nó
Đặt A=ab/(a+b) + bc/(b+c) + ac/(a+c)
Trước hết ta xét bất đẳng thức sau với x,y >0
(x+y)≥2√xy <=> (x+y)² ≥ 4xy <=> (x+y)≥(4xy)/(x+y)
ngịch đảo 2 vế ta có 1/(x+y) ≥ ¼(1/x+1/y)
Áp dụng cho bài toán ta có
ab/(a+b)≥¼ ab(1/a+1/b)=¼(a+b)
bc/(b+c) ≥¼(c+d)
ac/(a+c)≥¼(a+c)
Cộng 2 vế ta có A ≥¼(a+b+c+d+a+c)=½(a+b+c)
Nếu bạn cho a+b+c=m thì ta có mình A=m/2