min F biết √x2-6x+9 + √x^2+14x+49
Bài 2 Phân tích thành nhân tử
a) 3x2 – 7x – 10
b) x2 + 6x +9 – 4y2
c) x2 – 2xy + y2 – 5x + 5y’
d) 4x2 – y2 – 6x + 3y
e) 1 – 2a + 2bc + a2 – b2 – c2
f) x3 – 3x2 – 4x + 12
g) x4 + 64
h) x4 – 5x2 + 4
i) (x+1)(x+3)(x+5)(x+7) + 16
j) (x2 + 6x +8)( x2 + 14x + 48) – 9
k) ( x2 – 8x + 15)(x2 – 16x + 60) – 24x2
l) 4( x2 + 15x + 50)(x2 +18x +72) – 3x2
Bài 3 tìm gtnn
A = 9x2 – 6x + 2
B = 4x2 + 5x + 10
C = x2 – x + 10
D = 4x2 + 3x + 20
E = x2 + y2 – 6xy + 10y + 35
F= x2 + y2 – 6x + 4y +2
M= 2x2 + 4y2 – 4xy – 4x – 4y +2021
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
a) 3x2−7x−10=(x+1)(3x−10)3x2−7x−10=(x+1)(3x−10)
b) x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)
c) x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)
d) 4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)
e) 1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)
f) x3−3x2−4x+12=(x+2)(x−3)(x−2)x3−3x2−4x+12=(x+2)(x−3)(x−2)
g) x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)h) x4−5x2+4=(x+2)(x+1)(x−1)(x−2)x4−5x2+4=(x+2)(x+1)(x−1)(x−2)
i) (x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2(x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2
Tìm x?
d) ( 7- 2x) 2 = 49
e) ( 9 -x ) 3 = 216
f) 6x+2 + 6x = 1332
d) \(\left(7-2x\right)^2=49\)
\(\Rightarrow\left(7-2x\right)^2=\left(\pm7\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7-7\\2x=7+7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
e) \(\left(9-x\right)^3=216\)
\(\Rightarrow\left(9-x\right)^3=6^3\)
\(\Rightarrow9-x=6\)
\(\Rightarrow x=9-6\)
\(\Rightarrow x=3\)
g) \(6^{x+2}+6^x=1332\)
\(\Rightarrow6^x\cdot\left(6^2+1\right)=1332\)
\(\Rightarrow6^x\cdot37=1332\)
\(\Rightarrow6^x=1332:37\)
\(\Rightarrow6^x=36\)
\(\Rightarrow6^x=6^2\)
\(\Rightarrow x=2\)
\(d,\left(7-2x\right)^2=49\)
\(\Leftrightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
\(e,\left(9-x\right)^3=216\)
\(\Leftrightarrow\left(9-x\right)^3=6^3\)
\(\Leftrightarrow9-x=6\)
\(\Leftrightarrow x=3\)
\(f,6^{x+2}+6^x=1332\)
\(\Leftrightarrow6^x\left(6^2+1\right)=1332\)
\(\Leftrightarrow6^x\cdot37=1332\)
\(\Leftrightarrow6^x=36\)
\(\Leftrightarrow6^x=6^2\)
\(\Leftrightarrow x=2\)
#Urushi
\(\left(7-2x\right)^2=49=7^2=\left(-7\right)^2\\ \Rightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
---
\(\left(9-x\right)^3=216=6^3\\ \Rightarrow9-x=6\Leftrightarrow x=3\\ Vậy:x=3\)
---
\(6^{x+2}+6^x=1332\\ \Leftrightarrow6^x\left(6^2+1\right)=1332\\ \Leftrightarrow6^x.37=1332\\ \Leftrightarrow6^x=\dfrac{1332}{37}=36=6^2\\ Vậy:x=2\)
Tìm
Min A= 3x^2+2x+7/x^2+2x+3
Max B= 2x^2-16x+29/x^2-6x+10
Min C = 6x^2-14x+29/x^2-2x+5
Max D = 5x^2+2x+2/x^2+x+1
Phân tích các đa thức sau thành nhân tử:
a) x 2 + 6x + 8; b) 2 x 2 + 14x +12;
c) 9 x 2 + 24x +15; d) 6 x 2 -xy-7 y 2 .
a) (x + 2)(x + 4). b) 2(x + 6)(x + l).
c) 3(3x + 5)(x + l). d) (6x -7y)(x + y).
Tìm GTNN của biểu thức
a)\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
b)\(\sqrt{x^2+4x+4}+\sqrt{x^2-2x+1}+\sqrt{x^2-14x+49}\)
f(x)=-2x+6
f(x)=x2 -6x+5
f(x)=(x+3)(4-x)
f(x)=-x2 +4/x2-2x+1
bài 2 giải bpt sau
a (x-2)(x2+2x-3)>/=0
b x2-9/-x+5<0
giúp mình với ạ
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
Tìm x,biết:
a, 315+(125-x)=435
b, 6x-5=613
c, 128-3(x+4)=23
d, [(14x +26).3+55].5=23
e, -x +8=17
f, 134-2{156-6[54-2(9+6)]}.x=86
Bạn nào làm nhanh mình tick nhé.
a, 315+(125-x)=435
<=> 125 - x = 435 - 315
<=> 125 - x = 120
<=> x = 5
b, 6x-5=613
<=> 6x = 613 + 5
<=> 6x = 618
<=> x = 103
c, 128-3(x+4)=23
<=> 3(x +4 ) = 105
<=> x + 4 = 35
<=> x = 31
e, -x +8=17
<=> x = -9
a, 315+(125-x)=435
125-x=435-315=120
x=125-120=5
=>x=5
b,6x-5=613
6x=613+5=618
x=618:6=103
c, 128-3(x+4)=23
3(x+4)=128-23=105
x-4=105:3=35
x=35+4=39
Ý D NHẦM ĐẦU BÀI BẠN ƠI.
Tính tổng S = x 1 + x 2 biết x 1 , x 2 là các giá trị thực thỏa mãn đẳng thức 2 x 2 − 6 x + 1 = 1 4 x − 3
A. S = 4
B. S = 8
C. S = -5
D. S = 2
Đáp án A
Phương trình: 2 x 2 − 6 x + 1 = 1 4 x − 3
⇔ 2 x 2 − 6 x + 1 = 2 − 2 x − 3 ⇔ x 2 − 6 x + 1 = − 2 x + 6.
⇔ x 2 − 4 x − 5 = 0 → S = x 1 + x 2 = 4.
Tính tổng S = x 1 + x 2 biết x 1 , x 2 là các giá trị thực thỏa mãn đẳng thức 2 x 2 − 6 x + 1 = 1 4 x − 3 ?
A. S= 4
B. S= 8
C. S= -5
D. S= 2
Đáp án A
Phương trình
2 x 2 − 6 x + 1 = 1 4 x − 3 ⇔ 2 x 2 − 6 x + 1 = 2 − 2 x − 3 ⇔ x 2 − 6 x + 1 = − 2 x + 6.
⇔ x 2 − 4 x − 5 = 0 → S = x 1 + x 2 = 4.