Chứng minh rằng :
S = \(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+...+\(\frac{1}{99x100}\) < 1
Tìm số S
\(S=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x100}\)
Ghi cách giải ra nha!
\(\text{S}\)= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ .... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
\(S\)= ( 1 - \(\frac{1}{100}\)) : 2
\(S\)= \(\frac{99}{100}\): 2
\(S\)= \(\frac{99}{200}\)
tick nhé Lê Thiên Hương
\(\frac{1}{1x2}+\frac{1}{2x3}+.....+\frac{1}{99x100}\)
Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1\times2}+...+\frac{1}{99\times100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
b, B = 1\(\frac{1}{1x2}+\frac{1}{2x3}+......+\frac{1}{99x100}\)
c, C = \(\frac{1}{1x2}+\frac{1}{2x3}+......+\frac{1}{n\left(n+1\right)}\)
d, D = 1 + 2 + 3 + ......+ n
\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)
\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)
\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)
\(B=\frac{199}{100}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)
\(C=1-\frac{1}{n+1}\)
\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)
Áp dụng công thức tình dãy số ta có :
\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{99x100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
k cho mình nha bạn
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100=99/100
tính nhanh
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+....+\frac{1}{99x100}\)
1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
1. Tính tổng số :
S =\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+ .....+\(\frac{1}{99x100}\)
\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
Áp dụng công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
Dap an la 99/100.nho k cho minh.bai giai se gui sau
Cho A=\(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{99x100}\)
Chứng minh rằng: 7/12<A<5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)
và \(A
olm lag kinh đang làm lag thoát ra mất tiêu
-------đề đúng------------
Tính bằng cách thuận tiện :
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)
Mình sẽ tick cho một bạn nhanh nhất ! ^_^
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Đặt \(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(M=1-\frac{1}{100}\)
\(M=\frac{99}{100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+....+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Chứng minh rằng : \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{49x50}<1\)
Làm nhanh mình lick cho !
1/1x2+1/2x3+...+1/49x50
=1-1/2+1/2-1/3+.....+1/49-1/50
=1-1/50(1)
Ta co 1(2)
So sanh (1) voi (2) ta thay 1-1/50<1
=>1/1x2+...+1/49x50<1
(Phuong phap khu)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<1\)
Vậy \(\frac{49}{50}<1\)