Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:51

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)

ánh tuyết nguyễn
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 19:47

1) \(f\left(x\right)=2x-5\)

\(f'\left(x\right)=2\)

\(\Rightarrow f'\left(4\right)=2\)

2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)

\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:42

loading...  loading...  

Hoa Tăng
Xem chi tiết
Mai Anh
Xem chi tiết
Akai Haruma
28 tháng 3 2022 lúc 1:14

Lời giải:

Đạo hàm \(y'=\frac{-1}{2\sqrt{4-x}}+\frac{1}{2\sqrt{4+x}}\)

Đoạn tìm đạo hàm tại $y'\geq 0$ ý bạn là gì nhỉ?

 

títtt
Xem chi tiết
Nguyễn Đức Trí
17 tháng 9 2023 lúc 22:03

1) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)

\(\Rightarrow y=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)

2) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)

\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1\left(x+9\right)}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-6}{\left(x+3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)

\(\Rightarrow f'\left(1\right)=\dfrac{-6}{\left(1+3\right)^2}+\dfrac{2}{\sqrt[]{1}}=-\dfrac{3}{8}+2=\dfrac{13}{8}\)

Mai Nguyên Khang
Xem chi tiết
Phạm Thảo Vân
5 tháng 5 2016 lúc 8:31

xét hàm số y=\(\sqrt{x+\sqrt{x}}+\sqrt{x}\) . ta có

y'=\(\frac{\left(x+\sqrt{x}\right)}{2\sqrt{x+\sqrt{x}}}+\frac{1}{2\sqrt{x}}=\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}+\frac{1}{2\sqrt{x}}\)

=\(\frac{1+2\sqrt{x}}{4\sqrt{x}\sqrt{x+\sqrt{x}}}+\frac{1}{2\sqrt{x}}=\frac{1+2\sqrt{x}+2\sqrt{x+\sqrt{x}}}{4\sqrt{x}\sqrt{x+\sqrt{x}}}\)

 

Buddy
Xem chi tiết
Bùi Nguyên Khải
17 tháng 8 2023 lúc 12:10

tham khảo:

a)\(y'=\dfrac{d}{dx}\left(x^3\right)-\dfrac{d}{dx}\left(3x^2\right)+\dfrac{d}{dx}\left(2x\right)+\dfrac{d}{dx}\left(1\right)\)

\(y'=3x^2-6x+2\)

b)\(\dfrac{d}{dx}\left(x^n\right)=nx^{n-1}\)

\(\dfrac{d}{dx}\left(\sqrt{x}\right)=\dfrac{1}{2\sqrt{x}}\)

\(\dfrac{d}{dx}\left(f\left(x\right)+g\left(x\right)\right)=f'\left(x\right)+g'\left(x\right)\)

\(\dfrac{d}{dx}\left(cf\left(x\right)\right)=cf'\left(x\right)\)

\(y'=\dfrac{d}{dx}\left(x^2\right)-\dfrac{d}{dx}\left(4\sqrt{x}\right)+\dfrac{d}{dx}\left(3\right)\)

\(y'=2x-2\sqrt{x}\)

Buddy
Xem chi tiết
Hà Quang Minh
24 tháng 8 2023 lúc 10:24

\(a,y'=\left(\dfrac{\sqrt{x}}{x+1}\right)'\\ =\dfrac{\left(\sqrt{x}\right)'\left(x+1\right)-\sqrt{x}\left(x+1\right)}{\left(x+1\right)^2}\\ =\dfrac{\dfrac{x+1}{2\sqrt{x}}-\sqrt{x}}{\left(x+1\right)^2}\\ =\dfrac{x+1-2x}{2\sqrt{x}\left(x+1\right)^2}\\ =\dfrac{-x+1}{2\sqrt{x}\left(x+1\right)^2}\)

\(b,y'=\left(\sqrt{x}+1\right)'\left(x^2+2\right)+\left(\sqrt{x}+1\right)\left(x^2+2\right)'\\ =\dfrac{x^2+2}{2\sqrt{x}}+\left(\sqrt{x}+1\right)\cdot2x\)