Bài 1:Cho 2 đa thức :
A= x^3 - 2x^2 +1 ; B= 2x^2 - 1
a) Tính M=A+B
b) tính giá trị của M tại x= 1/2
c) Tìm x để M=0
Bài 2: cho 2 đâ thức
A= x^3 - x^2 - 2x + 1
B= x^3 + x^2
a) Tính M= A+B
b) Tính giá trị của M tại x=1
c) Tìm x để M=0
Bài 1:
a)Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
b)Tìm a để đa thức x^4-x^3+6x^2-x+a chia hết cho đa thức x^2-x+5
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
bài 8 .a,Tìm a để đa thức A(x)=2x\(^2\) -\(7x^2+10x+a\) chia hết co đa thức B(x)=x-2
b,Tìm m để đa thức A(x)=2x\(^3\)-x+m chia hết cho đa thức B(x)=2x+1
a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2
=>a+8=0
=>a=-8
b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1
=>m-0,25=0
=>m=0,25
Bài 2: Tìm a,b để :
a. Đa thức 3x^3 + 2x2 -7x + a chia hết cho đa thức 3x-1b. ax^2 + 5x^4 chia hết cho (x-1)^2c. Đa thức 2x^2 + ã +1 chia x-3 được d là 4d. 2x^3 - x^2 + ax + b chia hết cho x^2 -1Hộ aka: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1 : Rút Gọn Đa thức sau
3(2x+5)2-3(4x+1).(1-4x)
Bài 2 : Chia Đa thức Sau cho đơn Thức
( x4-2x3+4x2-8x):(x2+4)
Bài 3 : Chứng minh rằng biểu thức x2-xy+y2 không có giá trị âm vs mọi giá trị của x và y
Bài 4 : Tìm số a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
Bài 1 Cho hai đa thức :
A(x)=\(2x^3+2-3x^2+1\)
B(x)=\(2x^2+3x^3-x-6\)
a)Xác định bậc của đa thức A(x) và B(x)
b) Tính giá trị của đa thức A(x) tại x =2
c) Tính A(x)+B(x); A(x)-B(x)
a) \(A\left(x\right)=2x^3+2-3x^2+1=2x^3-3x^2+3\)
Có bậc là 3
\(B\left(x\right)=2x^2+3x^3-x-6=3x^3+2x^2-x-6\)
Có bậc 3
b) Thay \(x=2\) vào A(x) ta được:
\(2\cdot2^3-3\cdot2^2+3=2\cdot8-3\cdot4+3=16-12+3=7\)
Vậy giá trị của A(x) tại x=2 là 7
c) \(A\left(x\right)+B\left(x\right)\)
\(=2x^3-3x^2+3+3x^3+2x^2-x-6\)
\(=5x^3-x^2-x-3\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(2x^3-3x^2+3\right)-\left(2x^2+3x^3-x-6\right)\)
\(=2x^3-3x^2+3-2x^2-3x^3+x+6\)
\(=-x^3-5x^2+x+9\)
a: A(x)=2x^3-3x^2+3
Bậc là 3
B(x)=3x^3+2x^2-x-6
Bậc là 3
b: A(2)=2*2^3-3*2^2+3=7
c; A(x)+B(x)
=2x^3-3x^2+3+3x^3+2x^2-x-6
=5x^3-x^2-x-3
A(x)-B(x)
=2x^3-3x^2+3-3x^3-2x^2+x+6
=-x^3-5x^2+x+9
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`A(x)=2x^3 +2 - 3x^2 + 1`
Bậc của đa thức: `3`
`B(x) = 2x^2 + 3x^3 - x - 6`
Bậc của đa thức: `3`
`b)`
Thay `x=2` vào đa thức `A(x)`
`2*2^3 +2 - 3*2^2 + 1`
`= 2^4 + 2 - 12 + 1`
`= 16 + 2 - 12 + 1`
`= 16 - 10 + 1`
`= 6 + 1`
`= 7`
Vậy, giá trị của `A(x)` tại `x=2` là `A(2)=7`
`c)`
`A(x)+B(x)`
`= (2x^3 +2 - 3x^2 + 1)+(2x^2 + 3x^3 - x - 6)`
`= 2x^3 +2 - 3x^2 + 1+2x^2 + 3x^3 - x - 6`
`= (2x^3 + 3x^3) + (-3x^2 + 2x^2) - x + (2+1-6)`
`= 5x^3 - x^2 - x - 3`
`A(x) - B(x)`
`=(2x^3 +2 - 3x^2 + 1)-(2x^2 + 3x^3 - x - 6)`
`= 2x^3 +2 - 3x^2 + 1-2x^2 - 3x^3 + x + 6`
`= (2x^3 - 3x^3) + (-3x^2 - 2x^2) + x + (2 + 1 + 6)`
`= -x^3 - 5x^2 + x + 9`
Bài 1: Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
Bài 2: Tìm m để đa thức
A(x)= 2x^3 + x^2 - 4x + m chia hết cho đa thức B(x)= 2x-1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 - 8x
b) x^2 - xy - 6x + 6y
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
bài 1: Phân tích đa thức thành nhân tử
a)\(3x^3+6x^2\)
b)\(x^2-y^2-2x+2y\)
bài 2:
a) tìm x:\(\left(2x-1\right)^2-25=0\)
b) Tìm đa thức Q biết: \(Q.\left(x^2+3x+1\right)=x^3+2x^2-2x-1\)
Gisup mik vs
Cảm ơn
Bài `1:`
`a)3x^3+6x^2=3x^2(x+2)`
`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`
Bài `2:`
`a)(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>[(x=3),(x=-2):}`
`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`
`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`
`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`
`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`
Bài 1: Tìm m để đa thức f(x) = (m - 1)x2 - 3mx + 2 có nghiệm x = 1
Bài 2: Tìm nghiệm của các đa thức sau:
a) M(x) = -2x2 + 5x
b) N(x) = x(x - 1/2) + 2(x - 1/2)
c) P(x) = x2 + 2x + 2015
Bài 3: Cho f(x) - x8 - 101x7 + 101x6 - 101x5 +.....+ 101x2 - 101x +25. Tính f(100)?
Bài 4: Tìm n ∈ Z sao cho 2n - 3 ⋮ n + 1
Bài 5: Cho đa thức A = 2x2 + | 7x - 1 | - (5 - x + 2x2)
a) Thu gọn A
b) Tìm x để A = 2
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
bài 3 .
tham khảo ở đây : Câu hỏi của Trần Hà Mi - Toán lớp 7 - Học toán với OnlineMath
bài 4 .
Ta có : 2n - 3 = 2n + 2 - 5 = 2 . ( n + 1 ) - 5
Để 2n - 3 \(⋮\)n + 1 thì 2 . ( n + 1 ) - 5 \(⋮\)n + 1 mà 2 . ( n + 1 ) \(⋮\)n + 1 nên 5 \(⋮\)n + 1
\(\Rightarrow\)n + 1 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
\(\Rightarrow\)n \(\in\){ 0 ; -2 ; 4 ; -6 }