Phân tích thành nhân tử:
a) 2x-2√x
b)x-√x -6
c)4x -4√x +1
phân tích đa thức thành nhân tử:a, x^2(x+1)-2x(x+1)+x+1b, 4x^2 - 8x +3
a) \(x^2 (x+1)-2x(x+1)+x+1 \\ =(x+1)(x^2-2x+1)\\=(x+1)(x-1)^2\)
b) \(4x^2 -8x+3 \\= (2x^2)-2.2x .2 + 2^2 -1 \\=(2x-2)^2-1^2\\=(2x-2+1)(2x-2-1)\\= (2x-1)(2x-3)\)
Phân tích thành nhân tử:
a) \(x^2-ax+5x-5a\)
b) \(x^3-4x^2+4x\)
c) \(x^2-2x-y^2+1\)
\(a,x^2-ax+5x-5a=x\left(x-a\right)+5\left(x-a\right)=\left(x-a\right)\left(x+5\right)\\ b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\\ c,x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
Phân tích đa thức thành nhân tử:
a. (x^2+x+1)(x^2+x+2)-12
b. (x^2+2x)^2-2(x^2+2x)-3
c. (x^2+x)^2+4x^2+4x-12
d. (x+2)(x+4)(x+6)(x+8)+16
a: =(x^2+x)^2+3(x^2+x)-10
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
b: (x^2+2x)^2-2(x^2+2x)-3
=(x^2+2x-3)(x^2+2x+1)
=(x+1)^2*(x+3)(x-1)
c: =(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
d: =(x^2+10x+16)(x^2+10x+24)+16
=(x^2+10x)^2+40(x^2+10x)+400
=(x^2+10x+20)^2
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2- 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 +2x^3 + 2x^2
d) x^3 + 3x^2 + 3x +1 - 8y^3
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
c) Ta có: \(x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)
d) Ta có: \(x^3+3x^2+3x+1-8y^3\)
\(=\left(x+1\right)^3-\left(2y\right)^3\)
\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2 - 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 + 2x^3 + 2x^2
d) x^3 + 3x^2 + 3x + 1 - 8y^3
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
Phân tích các đa thức sau thành nhân tử:
a)6x^2y
b)x^2(x-y)+4(y-x)
c)x^3+2x^2y+xy^2-4x
a: 6x-2y=2(3x-y)
b: =(x-y)(x-2)(x+2)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
ko phân tích dc
b: =(x-y)(x-2)(x+2)
Phân tích các đa thức sau thành nhân tử:
a, 2x^2+3x-27
b, x^2-7x-6
c, x^2+7x+12
d,x^2-10x+16
e,x^2-8x+15
g,x^2+6x+8
a) \(2x^2+3x-27\)
\(=2x^2+9x-6x-27\)
\(=x\left(2x+9\right)-3\left(2x+9\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
b) sửa đề thành \(x^2+7x+6\)
\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
Phân tích các đa thức sau thành nhân tử:
a, 2x^2+3x-27
b, x^2-7x-6
c, x^2+7x+12
d, x^2-10x+16
e, x^2-8x+15
g, x^2+6x+8
\(a,=2x^2-6x+9x-27=\left(x-3\right)\left(2x+9\right)\\ b,=x^2-7x+\dfrac{49}{4}-\dfrac{73}{4}\\ =\left(x-\dfrac{7}{2}\right)^2-\dfrac{73}{4}=\left(x-\dfrac{7}{2}-\dfrac{\sqrt{73}}{2}\right)\left(x-\dfrac{7}{2}+\dfrac{\sqrt{73}}{2}\right)\\ c,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ d,=x^2-2x-8x+16=\left(x-2\right)\left(x-8\right)\\ e,=x^2-3x-5x+15=\left(x-3\right)\left(x-5\right)\\ g,=x^2+2x+4x+8=\left(x+2\right)\left(x+4\right)\)
Phân tích đa thành nhân tử:
a)x(x3-4)+2x3-4
b) (1+2x)(1-2x)-x(x+2)(x-2)
a: \(x\left(x^3-4\right)+2x^3-4\)
\(=x^4-4x+2x^3-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2-2x-2\right)\)
b: \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=-\left(x^3-1+4x^2-4x\right)\)
\(=-\left[\left(x-1\right)\left(x^2+x+1\right)+4x\left(x-1\right)\right]\)
\(=-\left(x-1\right)\left(x^2+5x+1\right)\)