1/1.2+1/2.3+1/3.4+...+1/59.60= /60
tính nhanh:
B=1+2+4+5+7+8+10+...+119+121+122
C=1.2+2.3+3.4+...+58.59+59.60
c: C=1*2+2*3+3*4+...+58*59+59*60
=>3*C=1*2*3+2*3*(4-1)+3*4*(5-2)+...+58*59(60-57)+59*60(61-58)
=>3*C=1*2*3+2*3*4-1*2*3+...+58*59*60-58*59*57+59*60*61-58*59*60
=>3*C=59*60*61
=>C=59*20*61=71980
Chứng minh: 1/1.2+1/3.4+1/5.6+...+1/59.60= 1/31+1/32+...+1/60
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}=\left(1+\frac{1}{3}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{59}+\frac{1}{60}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{60}\right)-\left(1+\frac{1}{2}+...+\frac{1}{30}\right)=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
1+7/1.2+7/2.3+7/3.4+....+7/58.59+7/59.60.
Giúp mình nha mình đang cần gấp lắm.
\(1+\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+\frac{7}{3\cdot4}+...+\frac{7}{59\cdot60}\)
\(=1+7\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{59\cdot60}\right)\)
\(=1+7\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}\right)\)
\(=1+7\left(1-\frac{1}{60}\right)\)
\(=1+7\cdot\frac{59}{60}\)
So sánh A và B :
A=1/31 + 1/32 + 1/33+....+1/60
B=1/1.2+1/3.4+1/5.6+.....1/59.60
\(\text{Có 3 trường hợp có thể xảy ra:}\)
\(A=B\)
\(A< B\)
\(A>B\)
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(Mà:\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}.10=\frac{1}{4}\left(\text{10 số hạng}\right)\)
\(\text{Tương tự}:\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(\Rightarrow A>\frac{37}{60}\)
\(Mà\)\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)
\(\Rightarrow A>\frac{3}{5}\)
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{31}.10=\frac{10}{30}=\frac{1}{3}\left(\text{10 số hạng}\right)\)
\(\Rightarrow A< \frac{4}{5}\)
\(\Rightarrow\frac{3}{5}< A< \frac{4}{5}\)
\(\text{Mik chỉ pít làm z!!!☺}\)
P=(1/1.2+1/3.4+1/5.6+1/59.60).31.32.33...59.60 chia hết cho 91
\(P=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)
\(\text{Ta có:}\)
\(91=13.7\)
\(\rightarrow4.13+5.17=42.35⋮91\)
\(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)
\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.....60.42.35\)
\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32....60.20.91⋮91\)
I.Tìm x, biết :
a) -(7/4) x (33/12 + 3333/2020 + 333333/303030 + 33333333/42424242)=22
b) 137x137x chia hết cho 13
II. So sánh :
a)A= 1/2.3/4.5/6. ... . 99/100 và B= 2/3.4/5.6/7. ... . 100/101
b) Cho : A=1/1.2+1/3.4+1/5.6+...+1/59.60
B=1/31+1/32+1/33+...+1/60
Hãy so sánh A và B ?
III. Cho các góc nhọn AOB và AOC có số đo theo thứ tự bằng 80o và 40o. Vẽ tia OE nằm giữa hai tia OA,OB sao cho BOE=60o. Tia OE là tia phân giác của góc nào ? Vì sao ?
IV.Tìm số nguyên n sao cho C= 2n+11 / n-1 cũng là số nguyên
V.Biết rằng số tự nhiên n chỉ có đúng 3 ước số. Hãy chững tỏ rằng số tự nhiên n đó là một số chính phương.
VI.Tìm các số tự nhiên x,y thỏa mãn x^2+x-89=5^y
Chứng minh :
\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+..+\dfrac{1}{59.60}\)
Đặt: \(\left\{{}\begin{matrix}A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\\B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\end{matrix}\right.\)
Ta có:
\(B=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{59.60}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{59}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{60}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{30}\right)\)
\(=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
\(\Rightarrow B=A\)
Vậy \(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{59.60}\) (Đpcm)
Ta có:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+......+\dfrac{1}{59.60}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+......+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{59}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)
- \(2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{60}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{60}\right)\) - \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)+ \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)
- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{30}\right)\)
= \(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)
Vậy\(\left(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+....+\dfrac{1}{60}\right)\)= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+....+\dfrac{1}{59.60}\)
So sánh A và B :
A = 1/31 + 1/32 + 1/33 + ....+ 1/60
B = 1/1.2 + 1/3.4 + ....+ 1/59.60
Giúp tớ với tớ đang vội
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}\)
\(B=\left(1+\frac{1}{3}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{59}+\frac{1}{60}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{30}\right)\)
\(B=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}=A\)
1,A= 1/2.15+3/2.11+ 4/1.11+5/2.1
2,Cho P= (1/1.2+ 1/3.4+ 1/5.6.........1/59.60).31.32.33......59.60
Chứng minh P chia hết cho 61