Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BiBi
Xem chi tiết
bảo phạm
24 tháng 12 2019 lúc 18:20

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

Khách vãng lai đã xóa
bảo phạm
24 tháng 12 2019 lúc 18:18

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:37

Xét tam giác ABC, ta có:

\(\widehat A + \widehat B + \widehat C = {180^o} \Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = {90^o}\)

Do đó \(\frac{{\widehat A}}{2}\) và \(\frac{{\widehat B + \widehat C}}{2}\) là hai góc phụ nhau.

a) Ta có: \(\sin \frac{A}{2} = \cos \left( {{{90}^o} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)

b) Ta có: \(\tan \frac{{B + C}}{2} = \cot \left( {{{90}^o} - \frac{{B + C}}{2}} \right) = \cot \frac{A}{2}\)

DO HOANG ANH
Xem chi tiết
Anh Phương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2019 lúc 18:07

Đề bài sai bạn, \(a=0;b=c=-\sqrt{3}\) thì \(a^2+b^2+c^2=6\)\(a+b+c< 0\)

Khách vãng lai đã xóa
nguyenducviet
Xem chi tiết
Nguyễn Đức Phú
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Trần Thị Hồng Ngát
8 tháng 4 2018 lúc 9:50

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2-4a^2-4b^2-4c^2+4ab+4ac+4bc=0\)

\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(a-c\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)

Hoang Ngoc Quynh
Xem chi tiết
Yuki
Xem chi tiết
Yuki
30 tháng 8 2017 lúc 22:14

cho a+b+c+d=2 chứng minh a^2+b^2+c^2 =1/3

Elly Nguyễn
30 tháng 8 2017 lúc 22:14
Áp dụng bất đẳng thức Schur bậc 3 và bất đẳng thức AM-GM ta có 1 a 2 + 1 b 2 + 1 c 2 + 3 = a 2 b 2 + b 2 c 2 + c 2 a 2 + 3 3 √ a 4 b 4 c 4 ≥ ∑ 3 √ a 2 b 2 . b 2 c 2 ( 3 √ a 2 b 2 + 3 √ b 2 c 2 ) = ∑ 3 √ b 4 ( 3 √ a 2 + 3 √ c 2 ) ≥ 2 ∑ 3 √ b 4 a c = 2 ∑
Yuki
30 tháng 8 2017 lúc 22:30

bn có thể giải theo cách lớp 8 dc ko?

Mik mới học lớp 8 thui