cho hai số hữu tỉ a/b và c/d (b>0,d>0). Chứng minh rằng <=> ad<bc
cho hai số hữu tỉ a/b và c/d (b>0,d>0). Chứng minh rằng <=> ad<bc
cho hai số hữu tỉ a/b ,c/d ( b>0,d>0) chứng minh rằng a/b<c/d nếu ad<bc và ngược lại
Cho hai số hữu tỉ a/b,c/d (b>0,d>0). Chứng minh rằng a/b<c/d nếu ad<cb và ngược lại.
Cho hai số hữu tỉ a b v à c d ( a,b,c, d ∈ Z, b > 0, d > 0). Chứng minh ad < bc khi và chỉ khi a b < c d
Nếu ad < bc => a d b d < b c b d = > a b < c d
Ngược lại nếu a b < c d = > a b . b d < c d . b d = > a d < b c
cho hai số hữu tỉ a/b và c/d (b.0,d>0). chứng tỏ rằng:
a) nếu a/b<c/d thì ad<bc
b)Nếu ad<bc thì a/b<c/d
Ta có:
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Cho hai số hữu tỉ a/b và c/d ( b>0,d>0 ). Chứng tỏ rằng :
a, Nếu a/b < c/d thì ad<cd
b, Nếu ad<bc thì a/b<c/d
1, cho hai số hữu tỉ a/b va c/d (b>0,d>0). chứng tỏ rằng
a) nếu a/b>c/d thi ad>bc
b) nếu ad>bc thì a/b và c/d
Cho hai số hữu tỉ a/b và c/d ( b>0,d>0) . Chứng tỏ rằng:
a) Nếu a/b < c/d thì ad<bc
b) Nếu ad<bc thì a/b<c/d
Cho hai số hữu tỉ a/b và c/d (b>0, d>0). Chứng tỏ rằng:
a)Nếu a/b < c/d thì ad < bc
b)Nếu ad < bc thì a/b <c/d
Ta có : \(\frac{a}{b}=\frac{ab}{bd},\frac{c}{d}=\frac{bc}{bd}\). Vì b > 0 , d > 0 nên bd > 0
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)ta có : \(\frac{ad}{bd}< \frac{bc}{bd}\)hay ad < bc
b) Nếu ad < bc thì ta có : \(\frac{ad}{bd}< \frac{bc}{bd}\)hay \(\frac{a}{b}< \frac{c}{d}\)